
bleak Documentation
Release 0.22.1

Henrik Blidh

May 12, 2024

CONTENTS

1 Features 3
1.1 Installation . 3
1.2 Usage . 4
1.3 API reference . 5
1.4 Backend implementations . 19
1.5 Troubleshooting . 40
1.6 Contributing . 46
1.7 Credits . 48
1.8 Changelog . 49

2 Indices and tables 73

Python Module Index 75

Index 77

i

ii

bleak Documentation, Release 0.22.1

Bleak is an acronym for Bluetooth Low Energy platform Agnostic Klient.

• Free software: MIT license

• Documentation: https://bleak.readthedocs.io.

Bleak is a GATT client software, capable of connecting to BLE devices acting as GATT servers. It is designed to
provide a asynchronous, cross-platform Python API to connect and communicate with e.g. sensors.

CONTENTS 1

https://github.com/hbldh/bleak
https://github.com/hbldh/bleak/actions?query=workflow%3A%22Build+and+Test%22
https://pypi.python.org/pypi/bleak
https://bleak.readthedocs.io/en/latest/?badge=latest
https://bleak.readthedocs.io

bleak Documentation, Release 0.22.1

2 CONTENTS

CHAPTER

ONE

FEATURES

• Supports Windows 10, version 16299 (Fall Creators Update) or greater

• Supports Linux distributions with BlueZ >= 5.43 (See Linux backend for more details)

• OS X/macOS support via Core Bluetooth API, from at least OS X version 10.11

Bleak supports reading, writing and getting notifications from GATT servers, as well as a function for discovering BLE
devices.

Contents:

1.1 Installation

1.1.1 Stable release

To install bleak, run this command in your terminal:

$ pip install bleak

This is the preferred method to install bleak, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1.1.2 Develop branch

The develop branch can also be installed using pip. This is useful for testing the latest changes before they reach the
stable release.

$ pip install https://github.com/hbldh/bleak/archive/refs/heads/develop.zip

For checking out a copy of Bleak for developing Bleak itself, see the Contributing page.

3

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/

bleak Documentation, Release 0.22.1

1.2 Usage

Note: A Bluetooth peripheral may have several characteristics with the same UUID, so the means of specifying
characteristics by UUID or string representation of it might not always work in bleak version > 0.7.0. One can
now also use the characteristic’s handle or even the BleakGATTCharacteristic object itself in read_gatt_char,
write_gatt_char, start_notify, and stop_notify.

One can use the BleakClient to connect to a Bluetooth device and read its model number via the asynchronous
context manager like this:

import asyncio
from bleak import BleakClient

address = "24:71:89:cc:09:05"
MODEL_NBR_UUID = "2A24"

async def main(address):
async with BleakClient(address) as client:

model_number = await client.read_gatt_char(MODEL_NBR_UUID)
print("Model Number: {0}".format("".join(map(chr, model_number))))

asyncio.run(main(address))

or one can do it without the context manager like this:

import asyncio
from bleak import BleakClient

address = "24:71:89:cc:09:05"
MODEL_NBR_UUID = "2A24"

async def main(address):
client = BleakClient(address)
try:

await client.connect()
model_number = await client.read_gatt_char(MODEL_NBR_UUID)
print("Model Number: {0}".format("".join(map(chr, model_number))))

except Exception as e:
print(e)

finally:
await client.disconnect()

asyncio.run(main(address))

Warning: Do not name your script bleak.py! It will cause a circular import error.

Make sure you always get to call the disconnect method for a client before discarding it; the Bluetooth stack on the OS
might need to be cleared of residual data which is cached in the BleakClient.

See examples folder for more code, e.g. on how to keep a connection alive over a longer duration of time.

4 Chapter 1. Features

https://github.com/hbldh/bleak/tree/master/examples

bleak Documentation, Release 0.22.1

1.3 API reference

Contents:

1.3.1 BleakScanner class

class bleak.BleakScanner(detection_callback: Optional[AdvertisementDataCallback] = None, service_uuids:
Optional[List[str]] = None, scanning_mode: Literal['active', 'passive'] = 'active', *,
bluez: BlueZScannerArgs = {}, cb: CBScannerArgs = {}, backend:
Optional[Type[BaseBleakScanner]] = None, **kwargs)

Interface for Bleak Bluetooth LE Scanners.

The scanner will listen for BLE advertisements, optionally filtering on advertised services or other conditions,
and collect a list of BLEDevice objects. These can subsequently be used to connect to the corresponding BLE
server.

A BleakScanner can be used as an asynchronous context manager in which case it automatically starts and
stops scanning.

Parameters

• detection_callback – Optional function that will be called each time a device is discov-
ered or advertising data has changed.

• service_uuids – Optional list of service UUIDs to filter on. Only advertisements contain-
ing this advertising data will be received. Required on macOS >= 12.0, < 12.3 (unless you
create an app with py2app).

• scanning_mode – Set to "passive" to avoid the "active" scanning mode. Passive scan-
ning is not supported on macOS! Will raise BleakError if set to "passive" on macOS.

• bluez – Dictionary of arguments specific to the BlueZ backend.

• cb – Dictionary of arguments specific to the CoreBluetooth backend.

• backend – Used to override the automatically selected backend (i.e. for a custom backend).

• **kwargs – Additional args for backwards compatibility.

Tip: The first received advertisement in detection_callback may or may not include scan response data if
the remote device supports it. Be sure to take this into account when handing the callback. For example, the
scan response often contains the local name of the device so if you are matching a device based on other data but
want to display the local name to the user, be sure to wait for adv_data.local_name is not None.

Changed in version 0.15: detection_callback, service_uuids and scanning_mode are no longer
keyword-only. Added bluez parameter.

Changed in version 0.18: No longer is alias for backend type and no longer inherits from BaseBleakScanner.
Added backend parameter.

1.3. API reference 5

bleak Documentation, Release 0.22.1

Easy methods

These methods and handy for simple programs but are not recommended for more advanced use cases like long running
programs, GUIs or connecting to multiple devices.

async classmethod BleakScanner.discover(timeout: float = 5.0, *, return_adv: Literal[False] = False,
**kwargs)→ List[BLEDevice]

async classmethod BleakScanner.discover(timeout: float = 5.0, *, return_adv: Literal[True], **kwargs)→
Dict[str, Tuple[BLEDevice, AdvertisementData]]

Scan continuously for timeout seconds and return discovered devices.

Parameters

• timeout – Time, in seconds, to scan for.

• return_adv – If True, the return value will include advertising data.

• **kwargs – Additional arguments will be passed to the BleakScanner constructor.

Returns
The value of discovered_devices_and_advertisement_data if return_adv is True, oth-
erwise the value of discovered_devices.

Changed in version 0.19: Added return_adv parameter.

async classmethod BleakScanner.find_device_by_name(name: str, timeout: float = 10.0, **kwargs:
Unpack[ExtraArgs])→ Optional[BLEDevice]

Obtain a BLEDevice for a BLE server specified by the local name in the advertising data.

Parameters

• name – The name sought.

• timeout – Optional timeout to wait for detection of specified peripheral before giving up.
Defaults to 10.0 seconds.

• **kwargs – additional args passed to the BleakScanner constructor.

Returns
The BLEDevice sought or None if not detected.

New in version 0.20.

async classmethod BleakScanner.find_device_by_address(device_identifier: str, timeout: float = 10.0,
**kwargs: Unpack[ExtraArgs])→
Optional[BLEDevice]

Obtain a BLEDevice for a BLE server specified by Bluetooth address or (macOS) UUID address.

Parameters

• device_identifier – The Bluetooth/UUID address of the Bluetooth peripheral sought.

• timeout – Optional timeout to wait for detection of specified peripheral before giving up.
Defaults to 10.0 seconds.

• **kwargs – additional args passed to the BleakScanner constructor.

Returns
The BLEDevice sought or None if not detected.

async classmethod BleakScanner.find_device_by_filter(filterfunc: AdvertisementDataFilter, timeout:
float = 10.0, **kwargs: Unpack[ExtraArgs])
→ Optional[BLEDevice]

6 Chapter 1. Features

bleak Documentation, Release 0.22.1

Obtain a BLEDevice for a BLE server that matches a given filter function.

This can be used to find a BLE server by other identifying information than its address, for example its name.

Parameters

• filterfunc – A function that is called for every BLEDevice found. It should return True
only for the wanted device.

• timeout – Optional timeout to wait for detection of specified peripheral before giving up.
Defaults to 10.0 seconds.

• **kwargs – Additional arguments to be passed to the BleakScanner constructor.

Returns
The BLEDevice sought or None if not detected before the timeout.

class bleak.BleakScanner.ExtraArgs

Keyword args from BleakScanner that can be passed to other convenience methods.

backend: Type[BaseBleakScanner]

Used to override the automatically selected backend (i.e. for a custom backend).

bluez: BlueZScannerArgs

Dictionary of arguments specific to the BlueZ backend.

cb: CBScannerArgs

Dictionary of arguments specific to the CoreBluetooth backend.

scanning_mode: Literal['active', 'passive']

Set to "passive" to avoid the "active" scanning mode. Passive scanning is not supported on macOS!
Will raise BleakError if set to "passive" on macOS.

service_uuids: List[str]

Optional list of service UUIDs to filter on. Only advertisements containing this advertising data will be
received. Required on macOS >= 12.0, < 12.3 (unless you create an app with py2app).

Starting and stopping

BleakScanner is an context manager so the recommended way to start and stop scanning is to use it in an async
with statement:

import asyncio
from bleak import BleakScanner

async def main():
stop_event = asyncio.Event()

TODO: add something that calls stop_event.set()

def callback(device, advertising_data):
TODO: do something with incoming data
pass

async with BleakScanner(callback) as scanner:
...

(continues on next page)

1.3. API reference 7

bleak Documentation, Release 0.22.1

(continued from previous page)

Important! Wait for an event to trigger stop, otherwise scanner
will stop immediately.
await stop_event.wait()

scanner stops when block exits
...

asyncio.run(main())

It can also be started and stopped without using the context manager using the following methods:

async BleakScanner.start()→ None
Start scanning for devices

async BleakScanner.stop()→ None
Stop scanning for devices

Getting discovered devices and advertisement data

If you aren’t using the “easy” class methods, there are three ways to get the discovered devices and advertisement data.

For event-driven programming, you can provide a detection_callback callback to the BleakScanner constructor.
This will be called back each time and advertisement is received.

Alternatively, you can utilize the asynchronous iterator to iterate over advertisements as they are received. The method
below returns an async iterator that yields the same tuples as otherwise provided to detection_callback.

async BleakScanner.advertisement_data()→ AsyncGenerator[Tuple[BLEDevice, AdvertisementData],
None]

Yields devices and associated advertising data packets as they are discovered.

Note: Ensure that scanning is started before calling this method.

Returns
An async iterator that yields tuples (BLEDevice, AdvertisementData).

New in version 0.21.

Otherwise, you can use one of the properties below after scanning has stopped.

property BleakScanner.discovered_devices: List[BLEDevice]

Gets list of the devices that the scanner has discovered during the scanning.

If you also need advertisement data, use discovered_devices_and_advertisement_data instead.

property BleakScanner.discovered_devices_and_advertisement_data: Dict[str,
Tuple[BLEDevice, AdvertisementData]]

Gets a map of device address to tuples of devices and the most recently received advertisement data for that
device.

The address keys are useful to compare the discovered devices to a set of known devices. If you don’t need to
do that, consider using discovered_devices_and_advertisement_data.values() to just get the values
instead.

New in version 0.19.

8 Chapter 1. Features

bleak Documentation, Release 0.22.1

Deprecated

BleakScanner.register_detection_callback(callback: Optional[Callable[[BLEDevice,
AdvertisementData], Optional[Coroutine[Any, Any, None]]]])
→ None

Register a callback that is called when a device is discovered or has a property changed.

Deprecated since version 0.17.0: This method will be removed in a future version of Bleak. Pass the callback
directly to the BleakScanner constructor instead.

Parameters
callback – A function, coroutine or None.

BleakScanner.set_scanning_filter(**kwargs)→ None
Set scanning filter for the BleakScanner.

Deprecated since version 0.17.0: This method will be removed in a future version of Bleak. Pass arguments
directly to the BleakScanner constructor instead.

Parameters
**kwargs – The filter details.

async BleakScanner.get_discovered_devices()→ List[BLEDevice]
Gets the devices registered by the BleakScanner.

Deprecated since version 0.11.0: This method will be removed in a future version of Bleak. Use the
discovered_devices property instead.

Returns
A list of the devices that the scanner has discovered during the scanning.

1.3.2 BleakClient class

class bleak.BleakClient(address_or_ble_device: Union[BLEDevice, str], disconnected_callback:
Optional[Callable[[BleakClient], None]] = None, services: Optional[Iterable[str]]
= None, *, timeout: float = 10.0, winrt: WinRTClientArgs = {}, backend:
Optional[Type[BaseBleakClient]] = None, **kwargs)

The Client interface for connecting to a specific BLE GATT server and communicating with it.

A BleakClient can be used as an asynchronous context manager in which case it automatically connects and
disconnects.

How many BLE connections can be active simultaneously, and whether connections can be active while scanning
depends on the Bluetooth adapter hardware.

Parameters

• address_or_ble_device – A BLEDevice received from a BleakScanner or a Bluetooth
address (device UUID on macOS).

• disconnected_callback – Callback that will be scheduled in the event loop when the
client is disconnected. The callable must take one argument, which will be this client object.

• services – Optional list of services to filter. If provided, only these services will be re-
solved. This may or may not reduce the time needed to enumerate the services depending on
if the OS supports such filtering in the Bluetooth stack or not (should affect Windows and
Mac). These can be 16-bit or 128-bit UUIDs.

1.3. API reference 9

bleak Documentation, Release 0.22.1

• timeout – Timeout in seconds passed to the implicit discover call when
address_or_ble_device is not a BLEDevice. Defaults to 10.0.

• winrt – Dictionary of WinRT/Windows platform-specific options.

• backend – Used to override the automatically selected backend (i.e. for a custom backend).

• **kwargs – Additional keyword arguments for backwards compatibility.

Warning: Although example code frequently initializes BleakClient with a Bluetooth address for sim-
plicity, it is not recommended to do so for more complex use cases. There are several known issues with
providing a Bluetooth address as the address_or_ble_device argument.

1. macOS does not provide access to the Bluetooth address for privacy/ security reasons. Instead it creates
a UUID for each Bluetooth device which is used in place of the address on this platform.

2. Providing an address or UUID instead of a BLEDevice causes the connect()method to implicitly call
BleakScanner.discover(). This is known to cause problems when trying to connect to multiple
devices at the same time.

Changed in version 0.15: disconnected_callback is no longer keyword-only. Added winrt parameter.

Changed in version 0.18: No longer is alias for backend type and no longer inherits from BaseBleakClient.
Added backend parameter.

Connecting and disconnecting

Before doing anything else with a BleakClient object, it must be connected.

bleak.BleakClient is a an async context manager, so the recommended way of connecting is to use it as such:

import asyncio
from bleak import BleakClient

async def main():
async with BleakClient("XX:XX:XX:XX:XX:XX") as client:

Read a characteristic, etc.
...

Device will disconnect when block exits.
...

Using asyncio.run() is important to ensure that device disconnects on
KeyboardInterrupt or other unhandled exception.
asyncio.run(main())

It is also possible to connect and disconnect without a context manager, however this can leave the device still connected
when the program exits:

async BleakClient.connect(**kwargs)→ bool
Connect to the specified GATT server.

Parameters
**kwargs – For backwards compatibility - should not be used.

Returns
Always returns True for backwards compatibility.

10 Chapter 1. Features

bleak Documentation, Release 0.22.1

async BleakClient.disconnect()→ bool
Disconnect from the specified GATT server.

Returns
Always returns True for backwards compatibility.

The current connection status can be retrieved with:

property BleakClient.is_connected: bool

Check connection status between this client and the GATT server.

Returns
Boolean representing connection status.

A callback can be provided to the BleakClient constructor via the disconnect_callback argument to be notified
of disconnection events.

Device information

property BleakClient.address: str

Gets the Bluetooth address of this device (UUID on macOS).

property BleakClient.mtu_size: int

Gets the negotiated MTU size in bytes for the active connection.

Consider using bleak.backends.characteristic.BleakGATTCharacteristic.
max_write_without_response_size instead.

Warning: The BlueZ backend will always return 23 (the minimum MTU size). See the mtu_size.py
example for a way to hack around this.

GATT Client Operations

All Bluetooth Low Energy devices use a common Generic Attribute Profile (GATT) for interacting with the device
after it is connected. Some GATT operations like discovering the services/characteristic/descriptors and negotiating
the MTU are handled automatically by Bleak and/or the OS Bluetooth stack.

The primary operations for the Bleak client are reading, writing and subscribing to characteristics.

Services

The available services on a device are automatically enumerated when connecting to a device. Services describe the
devices capabilities.

property BleakClient.services: BleakGATTServiceCollection

Gets the collection of GATT services available on the device.

The returned value is only valid as long as the device is connected.

Raises
BleakError – if service discovery has not been performed yet during this connection.

1.3. API reference 11

bleak Documentation, Release 0.22.1

GATT characteristics

Most I/O with a device is done via the characteristics.

async BleakClient.read_gatt_char(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID],
**kwargs)→ bytearray

Perform read operation on the specified GATT characteristic.

Parameters
char_specifier – The characteristic to read from, specified by either integer handle, UUID or
directly by the BleakGATTCharacteristic object representing it.

Returns
The read data.

async BleakClient.write_gatt_char(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID], data:
typing_extensions.Buffer, response: Optional[bool] = None)→ None

Perform a write operation on the specified GATT characteristic.

There are two possible kinds of writes. Write with response (sometimes called a Request) will write the data then
wait for a response from the remote device. Write without response (sometimes called Command) will queue
data to be written and return immediately.

Each characteristic may support one kind or the other or both or neither. Consult the device’s documentation or
inspect the properties of the characteristic to find out which kind of writes are supported.

Tip: Explicit is better than implicit. Best practice is to always include an explicit response=True or
response=False when calling this method.

Parameters

• char_specifier – The characteristic to write to, specified by either integer handle, UUID
or directly by the BleakGATTCharacteristic object representing it. If a device has more
than one characteristic with the same UUID, then attempting to use the UUID wil fail and a
characteristic object must be used instead.

• data – The data to send. When a write-with-response operation is used, the length of the
data is limited to 512 bytes. When a write-without-response operation is used, the length of
the data is limited to max_write_without_response_size. Any type that supports the
buffer protocol can be passed.

• response – If True, a write-with-response operation will be used. If False, a write-
without-response operation will be used. If omitted or None, the “best” operation will be
used based on the reported properties of the characteristic.

Changed in version 0.21: The default behavior when response= is omitted was changed.

Example:
MY_CHAR_UUID = "1234"
...
await client.write_gatt_char(MY_CHAR_UUID, b"", response=True)

async BleakClient.start_notify(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID], callback:
Callable[[BleakGATTCharacteristic, bytearray], Union[None,
Awaitable[None]]], **kwargs)→ None

Activate notifications/indications on a characteristic.

12 Chapter 1. Features

bleak Documentation, Release 0.22.1

Callbacks must accept two inputs. The first will be the characteristic and the second will be a bytearray
containing the data received.

def callback(sender: BleakGATTCharacteristic, data: bytearray):
print(f"{sender}: {data}")

client.start_notify(char_uuid, callback)

Parameters

• char_specifier – The characteristic to activate notifications/indications on a character-
istic, specified by either integer handle, UUID or directly by the BleakGATTCharacteristic
object representing it.

• callback – The function to be called on notification. Can be regular function or async
function.

Changed in version 0.18: The first argument of the callback is now a BleakGATTCharacteristic instead of
an int.

async BleakClient.stop_notify(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID])→ None
Deactivate notification/indication on a specified characteristic.

Parameters
char_specifier – The characteristic to deactivate notification/indication on, specified by either
integer handle, UUID or directly by the BleakGATTCharacteristic object representing it.

Tip: Notifications are stopped automatically on disconnect, so this method does not need to be called unless
notifications need to be stopped some time before the device disconnects.

GATT descriptors

Descriptors can provide additional information about a characteristic.

async BleakClient.read_gatt_descriptor(handle: int, **kwargs)→ bytearray
Perform read operation on the specified GATT descriptor.

Parameters
handle – The handle of the descriptor to read from.

Returns
The read data.

async BleakClient.write_gatt_descriptor(handle: int, data: typing_extensions.Buffer)→ None
Perform a write operation on the specified GATT descriptor.

Parameters

• handle – The handle of the descriptor to read from.

• data – The data to send.

1.3. API reference 13

bleak Documentation, Release 0.22.1

Pairing/bonding

On some devices, some characteristics may require authentication in order to read or write the characteristic. In this
case pairing/bonding the device is required.

async BleakClient.pair(*args, **kwargs)→ bool
Pair with the specified GATT server.

This method is not available on macOS. Instead of manually initiating paring, the user will be prompted to pair
the device the first time that a characteristic that requires authentication is read or written. This method may have
backend-specific additional keyword arguments.

Returns
Always returns True for backwards compatibility.

async BleakClient.unpair()→ bool
Unpair from the specified GATT server.

Unpairing will also disconnect the device.

This method is only available on Windows and Linux and will raise an exception on other platforms.

Returns
Always returns True for backwards compatibility.

Deprecated

BleakClient.set_disconnected_callback(callback: Optional[Callable[[BleakClient], None]], **kwargs)→
None

Set the disconnect callback.

Deprecated since version 0.17.0: This method will be removed in a future version of Bleak. Pass the callback to
the BleakClient constructor instead.

Parameters
callback – callback to be called on disconnection.

async BleakClient.get_services(**kwargs)→ BleakGATTServiceCollection
Get all services registered for this GATT server.

Deprecated since version 0.17.0: This method will be removed in a future version of Bleak. Use the services
property instead.

Returns
A bleak.backends.service.BleakGATTServiceCollection with this device’s services
tree.

1.3.3 Class representing BLE devices

Generated by bleak.discover() and bleak.backends.scanning.BaseBleakScanner.

Wrapper class for Bluetooth LE servers returned from calling bleak.discover().

Created on 2018-04-23 by hbldh <henrik.blidh@nedomkull.com>

class bleak.backends.device.BLEDevice(address: str, name: Optional[str], details: Any, rssi: int,
**kwargs)

A simple wrapper class representing a BLE server detected during scanning.

14 Chapter 1. Features

mailto:henrik.blidh@nedomkull.com

bleak Documentation, Release 0.22.1

address

The Bluetooth address of the device on this machine (UUID on macOS).

details

The OS native details required for connecting to the device.

property metadata: dict

Gets additional advertisement data for the device.

Deprecated since version 0.19.0: Use AdvertisementData from detection callback or BleakScanner.
discovered_devices_and_advertisement_data instead.

name

The operating system name of the device (not necessarily the local name from the advertising data), suitable
for display to the user.

property rssi: int

Gets the RSSI of the last received advertisement.

Deprecated since version 0.19.0: Use AdvertisementData from detection callback or BleakScanner.
discovered_devices_and_advertisement_data instead.

1.3.4 GATT objects

Gatt Service Collection class and interface class for the Bleak representation of a GATT Service.

Created on 2019-03-19 by hbldh <henrik.blidh@nedomkull.com>

class bleak.backends.service.BleakGATTService(obj: Any)
Interface for the Bleak representation of a GATT Service.

abstract add_characteristic(characteristic: BleakGATTCharacteristic)→ None
Add a BleakGATTCharacteristic to the service.

Should not be used by end user, but rather by bleak itself.

abstract property characteristics: List[BleakGATTCharacteristic]

List of characteristics for this service

property description: str

String description for this service

get_characteristic(uuid: Union[str, UUID])→ Optional[BleakGATTCharacteristic]
Get a characteristic by UUID.

Parameters
uuid – The UUID to match.

Returns
The first characteristic matching uuid or None if no matching characteristic was found.

abstract property handle: int

The handle of this service

abstract property uuid: str

The UUID to this service

class bleak.backends.service.BleakGATTServiceCollection

Simple data container for storing the peripheral’s service complement.

1.3. API reference 15

mailto:henrik.blidh@nedomkull.com

bleak Documentation, Release 0.22.1

add_characteristic(characteristic: BleakGATTCharacteristic)→ None
Add a BleakGATTCharacteristic to the service collection.

Should not be used by end user, but rather by bleak itself.

add_descriptor(descriptor: BleakGATTDescriptor)→ None
Add a BleakGATTDescriptor to the service collection.

Should not be used by end user, but rather by bleak itself.

add_service(service: BleakGATTService)→ None
Add a BleakGATTService to the service collection.

Should not be used by end user, but rather by bleak itself.

property characteristics: Dict[int, BleakGATTCharacteristic]

Returns dictionary of handles mapping to BleakGATTCharacteristic

property descriptors: Dict[int, BleakGATTDescriptor]

Returns a dictionary of integer handles mapping to BleakGATTDescriptor

get_characteristic(specifier: Union[int, str, UUID])→ Optional[BleakGATTCharacteristic]
Get a characteristic by handle (int) or UUID (str or uuid.UUID)

get_descriptor(handle: int)→ Optional[BleakGATTDescriptor]
Get a descriptor by integer handle

get_service(specifier: Union[int, str, UUID])→ Optional[BleakGATTService]
Get a service by handle (int) or UUID (str or uuid.UUID)

property services: Dict[int, BleakGATTService]

Returns dictionary of handles mapping to BleakGATTService

Interface class for the Bleak representation of a GATT Characteristic

Created on 2019-03-19 by hbldh <henrik.blidh@nedomkull.com>

class bleak.backends.characteristic.BleakGATTCharacteristic(obj: Any,
max_write_without_response_size:
int)

Interface for the Bleak representation of a GATT Characteristic

abstract add_descriptor(descriptor: BleakGATTDescriptor)→ None
Add a BleakGATTDescriptor to the characteristic.

Should not be used by end user, but rather by bleak itself.

property description: str

Description for this characteristic

abstract property descriptors: List[BleakGATTDescriptor]

List of descriptors for this service

abstract get_descriptor(specifier: Union[int, str, UUID])→ Optional[BleakGATTDescriptor]
Get a descriptor by handle (int) or UUID (str or uuid.UUID)

abstract property handle: int

The handle for this characteristic

16 Chapter 1. Features

mailto:henrik.blidh@nedomkull.com

bleak Documentation, Release 0.22.1

property max_write_without_response_size: int

Gets the maximum size in bytes that can be used for the data argument of BleakClient.
write_gatt_char() when response=False.

Warning: Linux quirk: For BlueZ versions < 5.62, this property will always return 20.

New in version 0.16.

abstract property properties: List[str]

Properties of this characteristic

abstract property service_handle: int

The integer handle of the Service containing this characteristic

abstract property service_uuid: str

The UUID of the Service containing this characteristic

abstract property uuid: str

The UUID for this characteristic

class bleak.backends.characteristic.GattCharacteristicsFlags(value)
An enumeration.

Interface class for the Bleak representation of a GATT Descriptor

Created on 2019-03-19 by hbldh <henrik.blidh@nedomkull.com>

class bleak.backends.descriptor.BleakGATTDescriptor(obj: Any)
Interface for the Bleak representation of a GATT Descriptor

abstract property characteristic_handle: int

handle for the characteristic that this descriptor belongs to

abstract property characteristic_uuid: str

UUID for the characteristic that this descriptor belongs to

property description: str

A text description of what this descriptor represents

abstract property handle: int

Integer handle for this descriptor

abstract property uuid: str

UUID for this descriptor

1.3.5 Exceptions

exception bleak.exc.BleakCharacteristicNotFoundError(char_specifier: Union[int, str, UUID])
Exception which is raised if a device does not support a characteristic.

exception bleak.exc.BleakDBusError(dbus_error: str, error_body: list)
Specialized exception type for D-Bus errors.

property dbus_error: str

Gets the D-Bus error name, e.g. org.freedesktop.DBus.Error.UnknownObject.

1.3. API reference 17

mailto:henrik.blidh@nedomkull.com

bleak Documentation, Release 0.22.1

property dbus_error_details: Optional[str]

Gets the optional D-Bus error details, e.g. ‘Invalid UUID’.

exception bleak.exc.BleakDeviceNotFoundError(identifier: str, *args: object)
Exception which is raised if a device can not be found by connect, pair and unpair. This is the case if the OS
Bluetooth stack has never seen this device or it was removed and forgotten.

exception bleak.exc.BleakError

Base Exception for bleak.

1.3.6 Utilities

bleak.uuids.normalize_uuid_16(uuid: int)→ str
Normaizes a 16-bit integer UUID to the format used by Bleak.

Returns
128-bit UUID as string with the format "0000xxxx-1000-8000-00805f9b34fb".

Example:

uuid = normalize_uuid_16(0x1234)
uuid == "00001234-1000-8000-00805f9b34fb"

New in version 0.21.

bleak.uuids.normalize_uuid_32(uuid: int)→ str
Normaizes a 32-bit integer UUID to the format used by Bleak.

Returns
128-bit UUID as string with the format "xxxxxxxx-1000-8000-00805f9b34fb".

Example:

uuid = normalize_uuid_32(0x12345678)
uuid == "12345678-1000-8000-00805f9b34fb"

New in version 0.21.

bleak.uuids.normalize_uuid_str(uuid: str)→ str
Normaizes a UUID to the format used by Bleak.

• Converted to lower case.

• 16-bit and 32-bit UUIDs are expanded to 128-bit.

Example:

16-bit
uuid1 = normalize_uuid_str("1234")
uuid1 == "00001234-1000-8000-00805f9b34fb"

32-bit
uuid2 = normalize_uuid_str("12345678")
uuid2 == "12345678-1000-8000-00805f9b34fb"

128-bit
uuid3 = normalize_uuid_str("12345678-1234-1234-1234567890ABC")
uuid3 == "12345678-1234-1234-1234567890abc"

18 Chapter 1. Features

bleak Documentation, Release 0.22.1

New in version 0.20.

Changed in version 0.21: Added support for 32-bit UUIDs.

bleak.uuids.register_uuids(uuids_to_descriptions: Dict[str, str])→ None
Add or modify the mapping of 128-bit UUIDs for services and characteristics to descriptions.

Parameters
uuids_to_descriptions – A dictionary of new mappings

1.3.7 Deprecated

bleak.discover(*args, **kwargs)
Deprecated since version 0.17.0: This method will be removed in a future version of Bleak. Use BleakScanner.
discover() instead.

1.4 Backend implementations

Bleak supports the following operating systems:

• Windows 10, version 16299 (Fall Creators Update) and greater

• Linux distributions with BlueZ >= 5.43 (See Linux backend for more details)

• OS X/macOS support via Core Bluetooth API, from at least version 10.11

• Partial Android support mostly using Python-for-Android/Kivy.

These pages document platform specific differences from the interface API.

Contents:

1.4.1 Windows backend

The Windows backend of bleak is written using PyWinRT to provide bindings for the Windows Runtime (WinRT).

The Windows backend implements a BleakClient in the module bleak.backends.winrt.client, a
BleakScanner method in the bleak.backends.winrt.scanner module. There are also backend-specific imple-
mentations of the BleakGATTService, BleakGATTCharacteristic and BleakGATTDescriptor classes.

Specific features for the Windows backend

Client

• The constructor keyword address_type which can have the values "public" or "random". This value makes
sure that the connection is made in a fashion that suits the peripheral.

1.4. Backend implementations 19

https://github.com/pywinrt/pywinrt

bleak Documentation, Release 0.22.1

API

Utilities

bleak.backends.winrt.util.allow_sta()

Suppress check for MTA thread type and allow STA.

Bleak will hang forever if the current thread is not MTA - unless there is a Windows event loop running that is
properly integrated with asyncio in Python.

If your program meets that condition, you must call this function do disable the check for MTA. If your program
doesn’t have a graphical user interface you probably shouldn’t call this function. and use uninitialize_sta()
instead.

New in version 0.22.1.

bleak.backends.winrt.util.assert_mta()→ None
Asserts that the current apartment type is MTA.

Raises
BleakError – If the current apartment type is not MTA.

New in version 0.22.

bleak.backends.winrt.util.uninitialize_sta()

Uninitialize the COM library on the current thread if it was not initialized as MTA.

This is intended to undo the implicit initialization of the COM library as STA by packages like pywin32.

It should be called as early as possible in your application after the offending package has been imported.

New in version 0.22.

Scanner

class bleak.backends.winrt.scanner.BleakScannerWinRT(detection_callback:
Optional[Callable[[BLEDevice,
AdvertisementData], Optional[Coroutine[Any,
Any, None]]]], service_uuids:
Optional[List[str]], scanning_mode:
Literal['active', 'passive'], **kwargs)

The native Windows Bleak BLE Scanner.

Implemented using Python/WinRT.

Parameters

• detection_callback – Optional function that will be called each time a device is discov-
ered or advertising data has changed.

• service_uuids – Optional list of service UUIDs to filter on. Only advertisements contain-
ing this advertising data will be received.

• scanning_mode – Set to "passive" to avoid the "active" scanning mode.

seen_devices: Dict[str, Tuple[BLEDevice, AdvertisementData]]

Map of device identifier to BLEDevice and most recent advertisement data.

This map must be cleared when scanning starts.

20 Chapter 1. Features

https://github.com/Microsoft/xlang/tree/master/src/package/pywinrt/projection/

bleak Documentation, Release 0.22.1

set_scanning_filter(**kwargs)→ None
Set a scanning filter for the BleakScanner.

Keyword Arguments

• SignalStrengthFilter (Windows.Devices.Bluetooth.
BluetoothSignalStrengthFilter) – A BluetoothSignalStrengthFilter object used
for configuration of Bluetooth LE advertisement filtering that uses signal strength-based
filtering.

• AdvertisementFilter (Windows.Devices.Bluetooth.Advertisement.
BluetoothLEAdvertisementFilter) – A BluetoothLEAdvertisementFilter object
used for configuration of Bluetooth LE advertisement filtering that uses payload section-
based filtering.

async start()→ None
Start scanning for devices

async stop()→ None
Stop scanning for devices

Client

BLE Client for Windows 10 systems, implemented with WinRT.

Created on 2020-08-19 by hbldh <henrik.blidh@nedomkull.com>

class bleak.backends.winrt.client.BleakClientWinRT(address_or_ble_device: Union[BLEDevice, str],
services: Optional[Set[str]] = None, *, winrt:
WinRTClientArgs, **kwargs)

Native Windows Bleak Client.

Parameters

• address_or_ble_device (str or BLEDevice) – The Bluetooth address of the BLE pe-
ripheral to connect to or the BLEDevice object representing it.

• services – Optional set of service UUIDs that will be used.

• winrt (dict) – A dictionary of Windows-specific configuration values.

• **timeout (float) – Timeout for required BleakScanner.find_device_by_address
call. Defaults to 10.0.

async connect(**kwargs)→ bool
Connect to the specified GATT server.

Keyword Arguments
timeout (float) – Timeout for required BleakScanner.find_device_by_address call.
Defaults to 10.0.

Returns
Boolean representing connection status.

async disconnect()→ bool
Disconnect from the specified GATT server.

Returns
Boolean representing if device is disconnected.

1.4. Backend implementations 21

mailto:henrik.blidh@nedomkull.com

bleak Documentation, Release 0.22.1

async get_services(*, service_cache_mode:
Optional[bleak_winrt.windows.devices.bluetooth.BluetoothCacheMode] = None,
cache_mode: Optional[bleak_winrt.windows.devices.bluetooth.BluetoothCacheMode]
= None, **kwargs)→ BleakGATTServiceCollection

Get all services registered for this GATT server.

Returns
A bleak.backends.service.BleakGATTServiceCollection with this device’s ser-
vices tree.

property is_connected: bool

Check connection status between this client and the server.

Returns
Boolean representing connection status.

property mtu_size: int

Get ATT MTU size for active connection

async pair(protection_level: Optional[int] = None, **kwargs)→ bool
Attempts to pair with the device.

Keyword Arguments
protection_level (int) – A DevicePairingProtectionLevel enum value:

1. None - Pair the device using no levels of protection.

2. Encryption - Pair the device using encryption.

3. EncryptionAndAuthentication - Pair the device using encryption and authentication. (This
will not work in Bleak. . .)

Returns
Boolean regarding success of pairing.

async read_gatt_char(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID], **kwargs)→
bytearray

Perform read operation on the specified GATT characteristic.

Parameters
char_specifier (BleakGATTCharacteristic, int, str or UUID) – The character-
istic to read from, specified by either integer handle, UUID or directly by the Bleak-
GATTCharacteristic object representing it.

Keyword Arguments
use_cached (bool) – False forces Windows to read the value from the device again and
not use its own cached value. Defaults to False.

Returns
(bytearray) The read data.

async read_gatt_descriptor(handle: int, **kwargs)→ bytearray
Perform read operation on the specified GATT descriptor.

Parameters
handle (int) – The handle of the descriptor to read from.

Keyword Arguments
use_cached (bool) – False forces Windows to read the value from the device again and not
use its own cached value. Defaults to False.

22 Chapter 1. Features

bleak Documentation, Release 0.22.1

Returns
(bytearray) The read data.

async start_notify(characteristic: BleakGATTCharacteristic, callback: Callable[[bytearray], None],
**kwargs)→ None

Activate notifications/indications on a characteristic.

Keyword Arguments
force_indicate (bool) – If this is set to True, then Bleak will set up a indication request
instead of a notification request, given that the characteristic supports notifications as well as
indications.

async stop_notify(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID])→ None
Deactivate notification/indication on a specified characteristic.

Parameters
char_specifier (BleakGATTCharacteristic, int, str or UUID) – The character-
istic to deactivate notification/indication on, specified by either integer handle, UUID or di-
rectly by the BleakGATTCharacteristic object representing it.

async unpair()→ bool
Attempts to unpair from the device.

N.B. unpairing also leads to disconnection in the Windows backend.

Returns
Boolean on whether the unparing was successful.

async write_gatt_char(characteristic: BleakGATTCharacteristic, data: typing_extensions.Buffer,
response: bool)→ None

Perform a write operation on the specified GATT characteristic.

Parameters

• characteristic – The characteristic to write to.

• data – The data to send.

• response – If write-with-response operation should be done.

async write_gatt_descriptor(handle: int, data: typing_extensions.Buffer)→ None
Perform a write operation on the specified GATT descriptor.

Parameters

• handle – The handle of the descriptor to read from.

• data – The data to send (any bytes-like object).

class bleak.backends.winrt.client.FutureLike(op: bleak_winrt.windows.foundation.IAsyncOperation)
Wraps a WinRT IAsyncOperation in a “future-like” object so that it can be passed to Python APIs.

Needed until https://github.com/pywinrt/pywinrt/issues/14

class bleak.backends.winrt.client.WinRTClientArgs

Windows-specific arguments for BleakClient.

address_type: Literal['public', 'random']

Can either be "public" or "random", depending on the required address type needed to connect to your
device.

1.4. Backend implementations 23

https://github.com/pywinrt/pywinrt/issues/14

bleak Documentation, Release 0.22.1

use_cached_services: bool

True allows Windows to fetch the services, characteristics and descriptors from the Windows cache in-
stead of reading them from the device. Can be very much faster for known, unchanging devices, but not
recommended for DIY peripherals where the GATT layout can change between connections.

False will force the attribute database to be read from the remote device instead of using the OS cache.

If omitted, the OS Bluetooth stack will do what it thinks is best.

1.4.2 Linux backend

The Linux backend of Bleak communicates with BlueZ over DBus. Communication uses the dbus-fast package for
async access to DBus messaging.

Special handling for write_gatt_char

The type option to the Characteristic.WriteValue method was added to Bluez in 5.51 Before that commit,
Characteristic.WriteValue was only “Write with response”.

Characteristic.AcquireWrite was added in Bluez 5.46 which can be used to “Write without response”, but for
older versions of Bluez (5.43, 5.44, 5.45), it is not possible to “Write without response”.

Resolving services with get_services

By default, calling get_services will wait for services to be resolved before returning the
BleakGATTServiceCollection. If a previous connection to the device was made, passing the
dangerous_use_bleak_cache argument will return the cached services without waiting for them to be re-
solved again. This is useful when you know services have not changed, and you want to use the services immediately,
but don’t want to wait for them to be resolved again.

Parallel Access

Each Bleak object should be created and used from a single asyncio event loop. Simple asyncio programs will only
have a single event loop. It’s also possible to use Bleak with multiple event loops, even at the same time, but individual
Bleak objects should not be shared between event loops. Otherwise, RuntimeErrors similar to [...] got Future
<Future pending> attached to a different loop will be thrown.

D-Bus Authentication

Connecting to the host DBus from within a user namespace will fail. This is because the remapped UID will not
match the UID that the hosts sees. To work around this, you can hardcode a UID with the BLEAK_DBUS_AUTH_UID
environment variable.

24 Chapter 1. Features

http://www.bluez.org/
https://github.com/Bluetooth-Devices/dbus-fast
https://git.kernel.org/pub/scm/bluetooth/bluez.git/commit?id=fa9473bcc48417d69cc9ef81d41a72b18e34a55a
https://git.kernel.org/pub/scm/bluetooth/bluez.git/commit/doc/gatt-api.txt?id=f59f3dedb2c79a75e51a3a0d27e2ae06fefc603e
https://docs.python.org/3/library/asyncio-eventloop.html

bleak Documentation, Release 0.22.1

API

Scanner

class bleak.backends.bluezdbus.scanner.BleakScannerBlueZDBus(detection_callback:
Optional[Callable[[BLEDevice,
AdvertisementData],
Optional[Coroutine[Any, Any,
None]]]], service_uuids:
Optional[List[str]], scanning_mode:
Literal['active', 'passive'], *, bluez:
BlueZScannerArgs, **kwargs)

The native Linux Bleak BLE Scanner.

For possible values for filters, see the parameters to the SetDiscoveryFilter method in the BlueZ docs

Parameters

• detection_callback – Optional function that will be called each time a device is discov-
ered or advertising data has changed.

• service_uuids – Optional list of service UUIDs to filter on. Only advertisements contain-
ing this advertising data will be received. Specifying this also enables scanning while the
screen is off on Android.

• scanning_mode – Set to "passive" to avoid the "active" scanning mode.

• **bluez – Dictionary of arguments specific to the BlueZ backend.

• **adapter (str) – Bluetooth adapter to use for discovery.

seen_devices: Dict[str, Tuple[BLEDevice, AdvertisementData]]

Map of device identifier to BLEDevice and most recent advertisement data.

This map must be cleared when scanning starts.

set_scanning_filter(**kwargs)→ None
Sets OS level scanning filters for the BleakScanner.

For possible values for filters, see the parameters to the SetDiscoveryFilter method in the BlueZ docs

See variant types here: <https://python-dbus-next.readthedocs.io/en/latest/type-system/>

Keyword Arguments
filters (dict) – A dict of filters to be applied on discovery.

async start()→ None
Start scanning for devices

async stop()→ None
Stop scanning for devices

class bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters

Dictionary of arguments for the org.bluez.Adapter1.SetDiscoveryFilter D-Bus method.

https://github.com/bluez/bluez/blob/master/doc/org.bluez.Adapter.rst#void-setdiscoveryfilterdict-filter

Discoverable: bool

Make adapter discoverable while discovering, if the adapter is already discoverable setting this filter won’t
do anything.

1.4. Backend implementations 25

https://github.com/bluez/bluez/blob/master/doc/org.bluez.Adapter.rst#void-setdiscoveryfilterdict-filter
https://github.com/bluez/bluez/blob/master/doc/org.bluez.Adapter.rst#void-setdiscoveryfilterdict-filter
https://python-dbus-next.readthedocs.io/en/latest/type-system/
https://github.com/bluez/bluez/blob/master/doc/org.bluez.Adapter.rst#void-setdiscoveryfilterdict-filter

bleak Documentation, Release 0.22.1

DuplicateData: bool

Disables duplicate detection of advertisement data.

This does not affect the Filter Duplicates parameter of the LE Set Scan Enable HCI command to
the Bluetooth adapter!

Although the default value for BlueZ is True, Bleak sets this to False by default.

Pathloss: int

Pathloss threshold value.

Pattern: str

Discover devices where the pattern matches either the prefix of the address or device name which is con-
venient way to limited the number of device objects created during a discovery.

RSSI: int

RSSI threshold value.

Transport: str

Transport parameter determines the type of scan.

This should not be used since it is required to be set to "le".

UUIDs: List[str]

Filter by service UUIDs, empty means match _any_ UUID.

Normally, the service_uuids argument of bleak.BleakScanner is used instead.

class bleak.backends.bluezdbus.scanner.BlueZScannerArgs

BleakScanner args that are specific to the BlueZ backend.

filters: BlueZDiscoveryFilters

Filters to pass to the adapter SetDiscoveryFilter D-Bus method.

Only used for active scanning.

or_patterns: List[Union[OrPattern, Tuple[int, AdvertisementDataType, bytes]]]

Or patterns to pass to the AdvertisementMonitor1 D-Bus interface.

Only used for passive scanning.

Client

BLE Client for BlueZ on Linux

class bleak.backends.bluezdbus.client.BleakClientBlueZDBus(address_or_ble_device:
Union[BLEDevice, str], services:
Optional[Set[str]] = None, **kwargs)

A native Linux Bleak Client

Implemented by using the BlueZ DBUS API.

Parameters

• address_or_ble_device (BLEDevice or str) – The Bluetooth address of the BLE periph-
eral to connect to or the BLEDevice object representing it.

• services – Optional list of service UUIDs that will be used.

Keyword Arguments

26 Chapter 1. Features

https://docs.ubuntu.com/core/en/stacks/bluetooth/bluez/docs/reference/dbus-api

bleak Documentation, Release 0.22.1

• timeout (float) – Timeout for required BleakScanner.find_device_by_address
call. Defaults to 10.0.

• disconnected_callback (callable) – Callback that will be scheduled in the event loop
when the client is disconnected. The callable must take one argument, which will be this
client object.

• adapter (str) – Bluetooth adapter to use for discovery.

async connect(dangerous_use_bleak_cache: bool = False, **kwargs)→ bool
Connect to the specified GATT server.

Keyword Arguments
timeout (float) – Timeout for required BleakScanner.find_device_by_address call.
Defaults to 10.0.

Returns
Boolean representing connection status.

Raises

• BleakError – If the device is already connected or if the device could not be found.

• BleakDBusError – If there was a D-Bus error

• asyncio.TimeoutError – If the connection timed out

async disconnect()→ bool
Disconnect from the specified GATT server.

Returns
Boolean representing if device is disconnected.

Raises

• BleakDBusError – If there was a D-Bus error

• asyncio.TimeoutError if the device was not disconnected within 10
seconds –

async get_services(dangerous_use_bleak_cache: bool = False, **kwargs)→
BleakGATTServiceCollection

Get all services registered for this GATT server.

Parameters
dangerous_use_bleak_cache (bool) – Use cached services if available.

Returns
A bleak.backends.service.BleakGATTServiceCollection with this device’s ser-
vices tree.

property is_connected: bool

Check connection status between this client and the server.

Returns
Boolean representing connection status.

property mtu_size: int

Get ATT MTU size for active connection

1.4. Backend implementations 27

bleak Documentation, Release 0.22.1

async pair(*args, **kwargs)→ bool
Pair with the peripheral.

You can use ConnectDevice method if you already know the MAC address of the device. Else you need to
StartDiscovery, Trust, Pair and Connect in sequence.

Returns
Boolean regarding success of pairing.

async read_gatt_char(char_specifier: Union[BleakGATTCharacteristicBlueZDBus, int, str, UUID],
**kwargs)→ bytearray

Perform read operation on the specified GATT characteristic.

Parameters
char_specifier (BleakGATTCharacteristicBlueZDBus, int, str or UUID) –
The characteristic to read from, specified by either integer handle, UUID or directly by the
BleakGATTCharacteristicBlueZDBus object representing it.

Returns
(bytearray) The read data.

async read_gatt_descriptor(handle: int, **kwargs)→ bytearray
Perform read operation on the specified GATT descriptor.

Parameters
handle (int) – The handle of the descriptor to read from.

Returns
(bytearray) The read data.

async start_notify(characteristic: BleakGATTCharacteristic, callback: Callable[[bytearray], None],
**kwargs)→ None

Activate notifications/indications on a characteristic.

async stop_notify(char_specifier: Union[BleakGATTCharacteristicBlueZDBus, int, str, UUID])→ None
Deactivate notification/indication on a specified characteristic.

Parameters
char_specifier (BleakGATTCharacteristicBlueZDBus, int, str or UUID) –
The characteristic to deactivate notification/indication on, specified by either integer handle,
UUID or directly by the BleakGATTCharacteristicBlueZDBus object representing it.

async unpair()→ bool
Unpair with the peripheral.

Returns
Boolean regarding success of unpairing.

async write_gatt_char(characteristic: BleakGATTCharacteristic, data: typing_extensions.Buffer,
response: bool)→ None

Perform a write operation on the specified GATT characteristic.

Parameters

• characteristic – The characteristic to write to.

• data – The data to send.

• response – If write-with-response operation should be done.

28 Chapter 1. Features

bleak Documentation, Release 0.22.1

async write_gatt_descriptor(handle: int, data: typing_extensions.Buffer)→ None
Perform a write operation on the specified GATT descriptor.

Parameters

• handle – The handle of the descriptor to read from.

• data – The data to send (any bytes-like object).

1.4.3 macOS backend

The macOS backend of Bleak is written with pyobjc directives for interfacing with Foundation and CoreBluetooth
APIs.

Specific features for the macOS backend

The most noticeable difference between the other backends of bleak and this backend, is that CoreBluetooth doesn’t
scan for other devices via Bluetooth address. Instead, UUIDs are utilized that are often unique between the device that
is scanning and the device that is being scanned.

In the example files, this is handled in this fashion:

mac_addr = (
"24:71:89:cc:09:05"
if platform.system() != "Darwin"
else "243E23AE-4A99-406C-B317-18F1BD7B4CBE"

)

As stated above, this will however only work the macOS machine that performed the scan and thus cached the device
as 243E23AE-4A99-406C-B317-18F1BD7B4CBE.

There is also no pairing functionality implemented in macOS right now, since it does not seem to be any explicit pairing
methods in the COre Bluetooth.

API

Scanner

class bleak.backends.corebluetooth.scanner.BleakScannerCoreBluetooth(detection_callback: Op-
tional[Callable[[BLEDevice,
AdvertisementData],
Optional[Coroutine[Any,
Any, None]]]],
service_uuids:
Optional[List[str]],
scanning_mode:
Literal['active', 'passive'],
*, cb: CBScannerArgs,
**kwargs)

The native macOS Bleak BLE Scanner.

Documentation: https://developer.apple.com/documentation/corebluetooth/cbcentralmanager

1.4. Backend implementations 29

https://pyobjc.readthedocs.io/en/latest/
https://pyobjc.readthedocs.io/en/latest/apinotes/Foundation.html
https://pyobjc.readthedocs.io/en/latest/apinotes/CoreBluetooth.html
https://developer.apple.com/documentation/corebluetooth/cbcentralmanager

bleak Documentation, Release 0.22.1

CoreBluetooth doesn’t explicitly use Bluetooth addresses to identify peripheral devices because private devices
may obscure their Bluetooth addresses. To cope with this, CoreBluetooth utilizes UUIDs for each peripheral.
Bleak uses this for the BLEDevice address on macOS.

Parameters

• detection_callback – Optional function that will be called each time a device is discov-
ered or advertising data has changed.

• service_uuids – Optional list of service UUIDs to filter on. Only advertisements contain-
ing this advertising data will be received. Required on macOS >= 12.0, < 12.3 (unless you
create an app with py2app).

• scanning_mode – Set to "passive" to avoid the "active" scanning mode. Not supported
on macOS! Will raise BleakError if set to "passive"

• **timeout (float) – The scanning timeout to be used, in case of missing stopScan_
method.

seen_devices: Dict[str, Tuple[BLEDevice, AdvertisementData]]

Map of device identifier to BLEDevice and most recent advertisement data.

This map must be cleared when scanning starts.

set_scanning_filter(**kwargs)→ None
Set scanning filter for the scanner.

Note: This is not implemented for macOS yet.

Raises
NotImplementedError –

async start()→ None
Start scanning for devices

async stop()→ None
Stop scanning for devices

class bleak.backends.corebluetooth.scanner.CBScannerArgs

Platform-specific BleakScanner args for the CoreBluetooth backend.

use_bdaddr: bool

If true, use Bluetooth address instead of UUID.

Warning: This uses an undocumented IOBluetooth API to get the Bluetooth address and may break
in the future macOS releases. It is known to not work on macOS 10.15.

30 Chapter 1. Features

https://github.com/hbldh/bleak/issues/1286

bleak Documentation, Release 0.22.1

Client

BLE Client for CoreBluetooth on macOS

Created on 2019-06-26 by kevincar <kevincarrolldavis@gmail.com>

class bleak.backends.corebluetooth.client.BleakClientCoreBluetooth(address_or_ble_device:
Union[BLEDevice, str],
services: Optional[Set[str]]
= None, **kwargs)

CoreBluetooth class interface for BleakClient

Parameters

• address_or_ble_device (BLEDevice or str) – The Bluetooth address of the BLE periph-
eral to connect to or the BLEDevice object representing it.

• services – Optional set of service UUIDs that will be used.

Keyword Arguments
timeout (float) – Timeout for required BleakScanner.find_device_by_address call.
Defaults to 10.0.

async connect(**kwargs)→ bool
Connect to a specified Peripheral

Keyword Arguments
timeout (float) – Timeout for required BleakScanner.find_device_by_address call.
Defaults to 10.0.

Returns
Boolean representing connection status.

async disconnect()→ bool
Disconnect from the peripheral device

async get_rssi()→ int
To get RSSI value in dBm of the connected Peripheral

async get_services(**kwargs)→ BleakGATTServiceCollection
Get all services registered for this GATT server.

Returns
A bleak.backends.service.BleakGATTServiceCollection with this device’s ser-
vices tree.

property is_connected: bool

Checks for current active connection

property mtu_size: int

Get ATT MTU size for active connection

async pair(*args, **kwargs)→ bool
Attempt to pair with a peripheral.

Note: This is not available on macOS since there is not explicit method to do a pairing, Instead the docs
state that it “auto-pairs” when trying to read a characteristic that requires encryption, something Bleak
cannot do apparently.

1.4. Backend implementations 31

mailto:kevincarrolldavis@gmail.com

bleak Documentation, Release 0.22.1

Reference:

• Apple Docs

• Stack Overflow post #1

• Stack Overflow post #2

Returns
Boolean regarding success of pairing.

async read_gatt_char(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID], use_cached:
bool = False, **kwargs)→ bytearray

Perform read operation on the specified GATT characteristic.

Parameters

• char_specifier (BleakGATTCharacteristic, int, str or UUID) – The charac-
teristic to read from, specified by either integer handle, UUID or directly by the Bleak-
GATTCharacteristic object representing it.

• use_cached (bool) – False forces macOS to read the value from the device again and not
use its own cached value. Defaults to False.

Returns
(bytearray) The read data.

async read_gatt_descriptor(handle: int, use_cached: bool = False, **kwargs)→ bytearray
Perform read operation on the specified GATT descriptor.

Parameters

• handle (int) – The handle of the descriptor to read from.

• use_cached (bool) – False forces Windows to read the value from the device again and
not use its own cached value. Defaults to False.

Returns
(bytearray) The read data.

async start_notify(characteristic: BleakGATTCharacteristic, callback: Callable[[bytearray], None],
**kwargs)→ None

Activate notifications/indications on a characteristic.

async stop_notify(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID])→ None
Deactivate notification/indication on a specified characteristic.

Parameters
char_specifier (BleakGATTCharacteristic, int, str or UUID) – The character-
istic to deactivate notification/indication on, specified by either integer handle, UUID or di-
rectly by the BleakGATTCharacteristic object representing it.

async unpair()→ bool
Returns:

async write_gatt_char(characteristic: BleakGATTCharacteristic, data: typing_extensions.Buffer,
response: bool)→ None

Perform a write operation on the specified GATT characteristic.

Parameters

• characteristic – The characteristic to write to.

32 Chapter 1. Features

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/BestPracticesForSettingUpYourIOSDeviceAsAPeripheral/BestPracticesForSettingUpYourIOSDeviceAsAPeripheral.html#//apple_ref/doc/uid/TP40013257-CH5-SW1
https://stackoverflow.com/questions/25254932/can-you-pair-a-bluetooth-le-device-in-an-ios-app
https://stackoverflow.com/questions/47546690/ios-bluetooth-pairing-request-dialog-can-i-know-the-users-choice

bleak Documentation, Release 0.22.1

• data – The data to send.

• response – If write-with-response operation should be done.

async write_gatt_descriptor(handle: int, data: typing_extensions.Buffer)→ None
Perform a write operation on the specified GATT descriptor.

Parameters

• handle – The handle of the descriptor to read from.

• data – The data to send (any bytes-like object).

1.4.4 Android backend

For an example of building an android bluetooth app, see the example folder and its accompanying README file.

There are a handful of ways to run Python on Android. Presently some code has been written for the Python-for-Android
build tool, and the code has only been tested using the Kivy Framework. The Kivy framework provides a way to make
graphical applications using bluetooth that run on both android and desktop.

An alternative framework is BeeWare. An implementation for BeeWare would likely be very similar to Python-for-
Android, if anybody is interested in contributing one. As of 2020, the major task to tackle is making a custom template
to embed Java subclasses of the Bluetooth Android interfaces, for forwarding callbacks.

The Python-for-Android backend classes are found in the bleak.backends.p4android package and are automati-
cally selected when building with python-for-android or Buildozer, Kivy’s automated build tool.

Considerations on Android

For one thing, the python-for-android backend has not been fully tested. Please run applications with adb logcat or
buildozer android logcat and file issues that include the output, so that any compatibility concerns with devices
the developer did not own can be eventually addressed. This backend was originally authored by @xloem for a project
that has mostly wrapped up now, so it would be good to tag him in the issues.

When fixing issues, often the Android documentation is lacking, and other resources may need to be consulted to find
information on various device quirks, such as community developer forums.

Sometimes device drivers will give off new, undocumented error codes. There is a developing list of these at bleak.
backends.p4android.defs.GATT_STATUS_NAMES. Please add to the list if you find new status codes, which is
indicated by a number being reported instead of a name.

Additionally a few small features are missing. Please file an issue if you need a missing feature, and ideally contribute
code, so that soon they will all be implemented.

Two missing features include scanning filters and indications (notifications without replies).

Additionally reading from a characteristic has not been tested at all, as xloem’s test device did not provide for this.

On Android, Bluetooth needs permissions for access. These permissions need to be added to the android application
in the buildozer.spec file, and are also requested from the user at runtime. This means that enabling bluetooth may not
succeed if the user does not accept permissions.

1.4. Backend implementations 33

https://github.com/hbldh/bleak/tree/develop/examples/kivy
https://python-for-android.readthedocs.io/
https://kivy.org/
https://beeware.org
https://buildozer.readthedocs.io/

bleak Documentation, Release 0.22.1

API

Scanner

class bleak.backends.p4android.scanner.BleakScannerP4Android(detection_callback:
Optional[Callable[[BLEDevice,
AdvertisementData],
Optional[Coroutine[Any, Any,
None]]]], service_uuids:
Optional[List[str]], scanning_mode:
Literal['active', 'passive'], **kwargs)

The python-for-android Bleak BLE Scanner.

Parameters

• detection_callback – Optional function that will be called each time a device is discov-
ered or advertising data has changed.

• service_uuids – Optional list of service UUIDs to filter on. Only advertisements contain-
ing this advertising data will be received. Specifying this also enables scanning while the
screen is off on Android.

• scanning_mode – Set to "passive" to avoid the "active" scanning mode.

seen_devices: Dict[str, Tuple[BLEDevice, AdvertisementData]]

Map of device identifier to BLEDevice and most recent advertisement data.

This map must be cleared when scanning starts.

set_scanning_filter(**kwargs)→ None
Set scanning filter for the BleakScanner.

Parameters
**kwargs – The filter details. This will differ a lot between backend implementations.

async start()→ None
Start scanning for devices

async stop()→ None
Stop scanning for devices

Client

BLE Client for python-for-android

class bleak.backends.p4android.client.BleakClientP4Android(address_or_ble_device:
Union[BLEDevice, str], services:
Optional[Set[UUID]], **kwargs)

A python-for-android Bleak Client

Parameters

• address_or_ble_device – The Bluetooth address of the BLE peripheral to connect to or
the BLEDevice object representing it.

• services – Optional set of services UUIDs to filter.

34 Chapter 1. Features

bleak Documentation, Release 0.22.1

async connect(**kwargs)→ bool
Connect to the specified GATT server.

Returns
Boolean representing connection status.

async disconnect()→ bool
Disconnect from the specified GATT server.

Returns
Boolean representing if device is disconnected.

async get_services()→ BleakGATTServiceCollection
Get all services registered for this GATT server.

Returns
A bleak.backends.service.BleakGATTServiceCollection with this device’s ser-
vices tree.

property is_connected: bool

Check connection status between this client and the server.

Returns
Boolean representing connection status.

property mtu_size: Optional[int]

Gets the negotiated MTU.

async pair(*args, **kwargs)→ bool
Pair with the peripheral.

You can use ConnectDevice method if you already know the MAC address of the device. Else you need to
StartDiscovery, Trust, Pair and Connect in sequence.

Returns
Boolean regarding success of pairing.

async read_gatt_char(char_specifier: Union[BleakGATTCharacteristicP4Android, int, str, UUID],
**kwargs)→ bytearray

Perform read operation on the specified GATT characteristic.

Parameters
char_specifier (BleakGATTCharacteristicP4Android, int, str or UUID) –
The characteristic to read from, specified by either integer handle, UUID or directly by the
BleakGATTCharacteristicP4Android object representing it.

Returns
(bytearray) The read data.

async read_gatt_descriptor(desc_specifier: Union[BleakGATTDescriptorP4Android, str, UUID],
**kwargs)→ bytearray

Perform read operation on the specified GATT descriptor.

Parameters
desc_specifier (BleakGATTDescriptorP4Android, str or UUID) – The descriptor
to read from, specified by either UUID or directly by the BleakGATTDescriptorP4Android
object representing it.

Returns
(bytearray) The read data.

1.4. Backend implementations 35

bleak Documentation, Release 0.22.1

async start_notify(characteristic: BleakGATTCharacteristic, callback: Callable[[bytearray], None],
**kwargs)→ None

Activate notifications/indications on a characteristic.

async stop_notify(char_specifier: Union[BleakGATTCharacteristicP4Android, int, str, UUID])→ None
Deactivate notification/indication on a specified characteristic.

Parameters
char_specifier (BleakGATTCharacteristicP4Android, int, str or UUID) –
The characteristic to deactivate notification/indication on, specified by either integer handle,
UUID or directly by the BleakGATTCharacteristicP4Android object representing it.

async unpair()→ bool
Unpair with the peripheral.

Returns
Boolean regarding success of unpairing.

async write_gatt_char(characteristic: BleakGATTCharacteristic, data: bytearray, response: bool)→
None

Perform a write operation on the specified GATT characteristic.

Parameters

• characteristic – The characteristic to write to.

• data – The data to send.

• response – If write-with-response operation should be done.

async write_gatt_descriptor(desc_specifier: Union[BleakGATTDescriptorP4Android, str, UUID],
data: bytearray)→ None

Perform a write operation on the specified GATT descriptor.

Parameters

• desc_specifier (BleakGATTDescriptorP4Android, str or UUID) – The descrip-
tor to write to, specified by either UUID or directly by the BleakGATTDescrip-
torP4Android object representing it.

• data (bytes or bytearray) – The data to send.

1.4.5 Shared Backend API

Warning: The backend APIs are not considered part of the stable API and may change without notice.

Scanner

class bleak.backends.scanner.AdvertisementData(local_name: Optional[str], manufacturer_data:
Dict[int, bytes], service_data: Dict[str, bytes],
service_uuids: List[str], tx_power: Optional[int], rssi:
int, platform_data: Tuple)

Wrapper around the advertisement data that each platform returns upon discovery

local_name: Optional[str]

The local name of the device or None if not included in advertising data.

36 Chapter 1. Features

bleak Documentation, Release 0.22.1

manufacturer_data: Dict[int, bytes]

Dictionary of manufacturer data in bytes from the received advertisement data or empty dict if not present.

The keys are Bluetooth SIG assigned Company Identifiers and the values are bytes.

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/

platform_data: Tuple

Tuple of platform specific data.

This is not a stable API. The actual values may change between releases.

rssi: int

The Radio Receive Signal Strength (RSSI) in dBm.

New in version 0.19.

service_data: Dict[str, bytes]

Dictionary of service data from the received advertisement data or empty dict if not present.

service_uuids: List[str]

List of service UUIDs from the received advertisement data or empty list if not present.

tx_power: Optional[int]

TX Power Level of the remote device from the received advertising data or None if not present.

New in version 0.17.

bleak.backends.scanner.AdvertisementDataCallback

Type alias for callback called when advertisement data is received.

alias of Callable[[BLEDevice, AdvertisementData], Optional[Coroutine[Any, Any, None]]]

bleak.backends.scanner.AdvertisementDataFilter

Type alias for an advertisement data filter function.

Implementations should return True for matches, otherwise False.

alias of Callable[[BLEDevice, AdvertisementData], bool]

class bleak.backends.scanner.BaseBleakScanner(detection_callback: Optional[Callable[[BLEDevice,
AdvertisementData], Optional[Coroutine[Any, Any,
None]]]], service_uuids: Optional[List[str]])

Interface for Bleak Bluetooth LE Scanners

Parameters

• detection_callback – Optional function that will be called each time a device is discov-
ered or advertising data has changed.

• service_uuids – Optional list of service UUIDs to filter on. Only advertisements contain-
ing this advertising data will be received.

call_detection_callbacks(device: BLEDevice, advertisement_data: AdvertisementData)→ None
Calls all registered detection callbacks.

Backend implementations should call this method when an advertisement event is received from the OS.

create_or_update_device(address: str, name: str, details: Any, adv: AdvertisementData)→ BLEDevice
Creates or updates a device in seen_devices.

Parameters

1.4. Backend implementations 37

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/

bleak Documentation, Release 0.22.1

• address – The Bluetooth address of the device (UUID on macOS).

• name – The OS display name for the device.

• details – The platform-specific handle for the device.

• adv – The most recent advertisement data received.

Returns
The updated device.

register_detection_callback(callback: Optional[Callable[[BLEDevice, AdvertisementData],
Optional[Coroutine[Any, Any, None]]]])→ Callable[[], None]

Register a callback that is called when an advertisement event from the OS is received.

The callback is a function or coroutine that takes two arguments: BLEDevice and AdvertisementData.

Parameters
callback – A function, coroutine or None.

Returns
A method that can be called to unregister the callback.

seen_devices: Dict[str, Tuple[BLEDevice, AdvertisementData]]

Map of device identifier to BLEDevice and most recent advertisement data.

This map must be cleared when scanning starts.

abstract set_scanning_filter(**kwargs)→ None
Set scanning filter for the BleakScanner.

Parameters
**kwargs – The filter details. This will differ a lot between backend implementations.

abstract async start()→ None
Start scanning for devices

abstract async stop()→ None
Stop scanning for devices

bleak.backends.scanner.get_platform_scanner_backend_type()→ Type[BaseBleakScanner]
Gets the platform-specific BaseBleakScanner type.

Client

Base class for backend clients.

Created on 2018-04-23 by hbldh <henrik.blidh@nedomkull.com>

class bleak.backends.client.BaseBleakClient(address_or_ble_device: Union[BLEDevice, str],
**kwargs)

The Client Interface for Bleak Backend implementations to implement.

The documentation of this interface should thus be safe to use as a reference for your implementation.

Parameters
address_or_ble_device (BLEDevice or str) – The Bluetooth address of the BLE peripheral
to connect to or the BLEDevice object representing it.

Keyword Arguments

• timeout (float) – Timeout for required discover call. Defaults to 10.0.

38 Chapter 1. Features

mailto:henrik.blidh@nedomkull.com

bleak Documentation, Release 0.22.1

• disconnected_callback (callable) – Callback that will be scheduled in the event loop
when the client is disconnected. The callable must take one argument, which will be this
client object.

abstract async connect(**kwargs)→ bool
Connect to the specified GATT server.

Returns
Boolean representing connection status.

abstract async disconnect()→ bool
Disconnect from the specified GATT server.

Returns
Boolean representing connection status.

abstract async get_services(**kwargs)→ BleakGATTServiceCollection
Get all services registered for this GATT server.

Returns
A bleak.backends.service.BleakGATTServiceCollection with this device’s ser-
vices tree.

abstract property is_connected: bool

Check connection status between this client and the server.

Returns
Boolean representing connection status.

abstract property mtu_size: int

Gets the negotiated MTU.

abstract async pair(*args, **kwargs)→ bool
Pair with the peripheral.

abstract async read_gatt_char(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID],
**kwargs)→ bytearray

Perform read operation on the specified GATT characteristic.

Parameters
char_specifier (BleakGATTCharacteristic, int, str or UUID) – The character-
istic to read from, specified by either integer handle, UUID or directly by the Bleak-
GATTCharacteristic object representing it.

Returns
(bytearray) The read data.

abstract async read_gatt_descriptor(handle: int, **kwargs)→ bytearray
Perform read operation on the specified GATT descriptor.

Parameters
handle (int) – The handle of the descriptor to read from.

Returns
(bytearray) The read data.

set_disconnected_callback(callback: Optional[Callable[[], None]], **kwargs)→ None
Set the disconnect callback. The callback will only be called on unsolicited disconnect event.

Set the callback to None to remove any existing callback.

1.4. Backend implementations 39

bleak Documentation, Release 0.22.1

Parameters
callback – callback to be called on disconnection.

abstract async start_notify(characteristic: BleakGATTCharacteristic, callback:
Callable[[bytearray], None], **kwargs)→ None

Activate notifications/indications on a characteristic.

Implementers should call the OS function to enable notifications or indications on the characteristic.

To keep things the same cross-platform, notifications should be preferred over indications if possible when
a characteristic supports both.

abstract async stop_notify(char_specifier: Union[BleakGATTCharacteristic, int, str, UUID])→ None
Deactivate notification/indication on a specified characteristic.

Parameters
char_specifier (BleakGATTCharacteristic, int, str or UUID) – The character-
istic to deactivate notification/indication on, specified by either integer handle, UUID or di-
rectly by the BleakGATTCharacteristic object representing it.

abstract async unpair()→ bool
Unpair with the peripheral.

abstract async write_gatt_char(characteristic: BleakGATTCharacteristic, data:
typing_extensions.Buffer, response: bool)→ None

Perform a write operation on the specified GATT characteristic.

Parameters

• characteristic – The characteristic to write to.

• data – The data to send.

• response – If write-with-response operation should be done.

abstract async write_gatt_descriptor(handle: int, data: typing_extensions.Buffer)→ None
Perform a write operation on the specified GATT descriptor.

Parameters

• handle – The handle of the descriptor to read from.

• data – The data to send (any bytes-like object).

bleak.backends.client.get_platform_client_backend_type()→ Type[BaseBleakClient]
Gets the platform-specific BaseBleakClient type.

1.5 Troubleshooting

When things don’t seem to be working right, here are some things to try.

40 Chapter 1. Features

bleak Documentation, Release 0.22.1

1.5.1 Common Mistakes

Many people name their first script bleak.py. This causes the script to crash with an ImportError similar to:

ImportError: cannot import name 'BleakClient' from partially initialized module 'bleak'␣
→˓(most likely due to a circular import) (bleak.py)`

To fix the error, change the name of the script to something other than bleak.py.

1.5.2 macOS Bugs

Bleak crashes with SIGABRT on macOS

If you see a crash similar to this:

Crashed Thread: 1 Dispatch queue: com.apple.root.default-qos

Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000
Exception Note: EXC_CORPSE_NOTIFY

Termination Reason: Namespace TCC, Code 0
This app has crashed because it attempted to access privacy-sensitive data without a␣
→˓usage description. The app's Info.plist must contain an␣
→˓NSBluetoothAlwaysUsageDescription key with a string value explaining to the user how␣
→˓the app uses this data.

It is not a problem with Bleak. It is a problem with your terminal application.

Ideally, the terminal application should be fixed by adding NSBluetoothAlwaysUsageDescription to the Info.
plist file (example).

It is also possible to manually add the app to the list of Bluetooth apps in the Privacy settings in the macOS System
Preferences.

1.5. Troubleshooting 41

https://github.com/gnachman/iTerm2/pull/457/commits/626068e026ffb958242034129a1974ff87b21a32

bleak Documentation, Release 0.22.1

If the app is already in the list but the checkbox for Bluetooth is disabled, you will get the a BleakError: “BLE is not
authorized - check macOS privacy settings”. instead of crashing with SIGABRT, in which case you need to check the
box to allow Bluetooth for the app that is running Python.

No devices found when scanning on macOS 12

A bug was introduced in macOS 12.0 that causes scanning to not work unless a list of service UUIDs is provided to
BleakScanner. This bug was fixed in macOS 12.3. On the affected version, users of bleak will see the following error
logged:

macOS 12.0, 12.1 and 12.2 require non-empty service_uuids kwarg, otherwise no␣
→˓advertisement data will be received

See #635 and #720 for more information including some partial workarounds if you need to support these macOS
versions.

42 Chapter 1. Features

https://github.com/hbldh/bleak/issues/635
https://github.com/hbldh/bleak/issues/720

bleak Documentation, Release 0.22.1

1.5.3 Windows Bugs

Not working when threading model is STA

Packages like pywin32 and it’s subsidiaries have an unfortunate side effect of initializing the threading model to Single
Threaded Apartment (STA) when imported. This causes async WinRT functions to never complete. because there isn’t
a message loop running. Bleak needs to run in a Multi Threaded Apartment (MTA) instead (this happens automatically
on the first WinRT call).

Bleak should detect this and raise an exception with a message similar to:

The current thread apartment type is not MTA: STA.

To work around this, you can use one of the utility functions provided by Bleak.

If your program has a graphical user interface and the UI framework and it is properly integrated with asyncio and
Bleak is not running on a background thread then call allow_sta() before calling any other Bleak APis:

try:
from bleak.backends.winrt.util import allow_sta
tell Bleak we are using a graphical user interface that has been properly
configured to work with asyncio
allow_sta()

except ImportError:
other OSes and older versions of Bleak will raise ImportError which we
can safely ignore
pass

The more typical case, though, is that some library has imported something like pywin32 which breaks Bleak. In this
case, you can uninitialize the threading model like this:

import win32com # this sets current thread to STA :-(
from bleak.backends.winrt.util import uninitialize_sta

uninitialize_sta() # undo the unwanted side effect

1.5.4 Enable Logging

The easiest way to enable logging is to set the BLEAK_LOGGING environment variable. Setting the variable depends on
what type of terminal you are using.

Posix (Linux, macOS, Cygwin, etc.):

export BLEAK_LOGGING=1

Power Shell:

$env:BLEAK_LOGGING=1

Windows Command Prompt:

set BLEAK_LOGGING=1

Then run your Python script in the same terminal.

1.5. Troubleshooting 43

bleak Documentation, Release 0.22.1

1.5.5 Connecting to multiple devices at the same time

If you’re having difficulty connecting to multiple devices, try to do a scan first and pass the returned BLEDevice objects
to BleakClient calls.

Python:

import asyncio
from typing import Sequence

from bleak import BleakClient, BleakScanner
from bleak.backends.device import BLEDevice

async def find_all_devices_services():
devices: Sequence[BLEDevice] = await BleakScanner.discover(timeout=5.0)

for d in devices:
async with BleakClient(d) as client:

print(client.services)

asyncio.run(find_all_devices_services())

1.5.6 Capture Bluetooth Traffic

Sometimes it can be helpful to see what is actually going over the air between the OS and the Bluetooth device. There
are tools available to capture HCI packets and decode them.

Windows 10

There is a Windows hardware developer package that includes a tool that supports capturing Bluetooth traffic directly
in Wireshark.

Install

1. Download and install Wireshark.

2. Download and install the BTP software package.

Capture

To capture Bluetooth traffic:

1. Open a terminal as Administrator.

• Search start menu for cmd. (Powershell and Windows Terminal are fine too.)

• Right-click Command Prompt and select Run as Administrator.

44 Chapter 1. Features

https://www.wireshark.org/
https://docs.microsoft.com/windows-hardware/drivers/bluetooth/testing-btp-setup-package

bleak Documentation, Release 0.22.1

2. Run C:\BTP\v1.9.0\x86\btvs.exe. This should automatically start Wireshark in capture mode.

Tip: The version needs to match the installed version. v1.9.0 was the current version at the time this was
written. Additionally, C: may not be the root drive on some systems.

3. Run your Python script in a different terminal (not as Administrator) to reproduce the problem.

4. Click the stop button in Wireshark to stop the capture.

macOS

On macOS, special software is required to capture and view Bluetooth traffic. You will need to sign up for an Apple
Developer account to obtain this software.

1. Go to https://developer.apple.com/download/more/ and download Additional Tools for Xcode . . . where . . . is
the Xcode version corresponding to your macOS version (e.g. 12 for Big Sur, 11 for Mojave, etc.).

2. Open the disk image and in the Hardware folder, double-click the PacketLogger.app to run it.

3. Click the Clear button in the toolbar to clear the old data.

4. Run your Python script to reproduce the problem.

5. Click the Stop button in the toolbar to stop the capture.

Tip: The Bluetooth traffic can be viewed in the PacketLogger.app or it can be saved to a file and viewed in Wireshark.

Linux

On Linux, Wireshark can be used to capture and view Bluetooth traffic.

1. Install Wireshark. Most distributions include a wireshark package. For example, on Debian/Ubuntu based
distributions:

sudo apt update && sudo apt install wireshark

2. Start Wireshark and select your Bluetooth adapter, then start a capture.

1.5. Troubleshooting 45

https://developer.apple.com/download/more/
https://www.wireshark.org/
https://www.wireshark.org/

bleak Documentation, Release 0.22.1

Tip: Visit the Wireshark Wiki for help with configuring permissions and making sure proper drivers are in-
stalled.

3. Run your Python script to reproduce the problem.

4. Click the stop button in Wireshark to stop the capture.

1.5.7 Handling OS Caching of BLE Device Services

If you develop your own BLE peripherals, and frequently change services, characteristics and/or descriptors, then Bleak
might report outdated versions of your peripheral’s services due to OS level caching. The caching is done to speed up
the connections with peripherals where services do not change and is enabled by default on most operating systems
and thus also in Bleak.

There are ways to avoid this on different backends though, and if you experience these kinds of problems, the steps
below might help you to circumvent the caches.

macOS

The OS level caching handling on macOS has not been explored yet.

Linux

When you change the structure of services/characteristics on a device, you have to remove the device from BlueZ so that
it will read everything again. Otherwise BlueZ gives the cached values from the first time the device was connected.
You can use the bluetoothctl command line tool to do this:

bluetoothctl -- remove XX:XX:XX:XX:XX:XX
prior to BlueZ 5.62 you also need to manually delete the GATT cache
sudo rm "/var/lib/bluetooth/YY:YY:YY:YY:YY:YY/cache/XX:XX:XX:XX:XX:XX"

. . .where XX:XX:XX:XX:XX:XX is the Bluetooth address of your device and YY:YY:YY:YY:YY:YY is the Bluetooth
address of the Bluetooth adapter on your computer.

1.6 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

46 Chapter 1. Features

https://gitlab.com/wireshark/wireshark/-/wikis/CaptureSetup

bleak Documentation, Release 0.22.1

1.6.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/hbldh/bleak/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

bleak could always use more documentation, whether as part of the official bleak docs, in docstrings, or even on the
web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/hbldh/bleak/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

1.6.2 Get Started!

Ready to contribute? Here’s how to set up bleak for local development.

You will need Git and Poetry and your favorite text editor. And Python of course.

1. Fork the bleak repo on GitHub.

2. Clone your fork locally:

$ git clone https://github.com:your_name_here/bleak.git

3. Set up the Python environment:

1.6. Contributing 47

https://github.com/hbldh/bleak/issues
https://github.com/hbldh/bleak/issues
https://git-scm.com
https://python-poetry.org

bleak Documentation, Release 0.22.1

$ cd bleak/
$ poetry install

4. Create a branch for local development, originating from the develop branch:

$ git checkout -b name-of-your-bugfix-or-feature develop

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass linting and the tests:

$ poetry run isort .
$ poetry run black .
$ poetry run flake8
$ poetry run pytest

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

1.6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. If the pull request adds functionality, the docs should be updated.

2. Modify the CHANGELOG.rst, describing your changes as is specified by the guidelines in that document.

3. The pull request should work for Python 3.8+ on the following platforms:

• Windows 10, version 16299 (Fall Creators Update) and greater

• Linux distributions with BlueZ >= 5.43

• OS X / macOS >= 10.11

4. Squash all your commits on your PR branch, if the commits are not solving different problems and you are
committing them in the same PR. In that case, consider making several PRs instead.

5. Feel free to add your name as a contributor to the AUTHORS.rst file!

1.7 Credits

1.7.1 Development Lead

• Henrik Blidh <henrik.blidh@nedomkull.com>

48 Chapter 1. Features

mailto:henrik.blidh@nedomkull.com

bleak Documentation, Release 0.22.1

1.7.2 Development Team / Collaborators

• David Lechner <david@pybricks.com>

1.7.3 Contributors

• Chad Spensky <chad@allthenticate.net>

• Bernie Conrad <bernie@allthenticate.net>

• Jonathan Soto <jsotogaviard@alum.mit.edu>

• Kyle J. Williams <kyle@kjwill.tech>

• Edward Betts <edward@4angle.com>

• Robbe Gaeremynck <robbe.gaeremynck@outlook.com>

• David Johansen <davejohansen@gmail.com>

• JP Hutchins <jphutchins@gmail.com>

1.7.4 Sponsors

• Nabu Casa <https://www.nabucasa.com/>

1.8 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

1.8.1 Unreleased

Changed

• Retrieve the BLE address required by BleakClientWinRT from scan response if advertising is None (WinRT).

• Changed type hint for adv attribute of bleak.backends.winrt.scanner._RawAdvData.

1.8.2 0.22.1 (2024-05-07)

Added

• Added bleak.backends.winrt.util.allow_sta() method to allow integration with graphical user inter-
faces on Windows. Fixes #1565.

1.8. Changelog 49

mailto:david@pybricks.com
mailto:chad@allthenticate.net
mailto:bernie@allthenticate.net
mailto:jsotogaviard@alum.mit.edu
mailto:kyle@kjwill.tech
mailto:edward@4angle.com
mailto:robbe.gaeremynck@outlook.com
mailto:davejohansen@gmail.com
mailto:jphutchins@gmail.com
https://www.nabucasa.com/
https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

bleak Documentation, Release 0.22.1

1.8.3 0.22.0 (2024-05-04)

Added

• Added BleakCharacteristicNotFoundError which is raised if a device does not support a characteristic.

• Added utility function to work around pywin32 setting threading model to STA on Windows.

Changed

• Updated PyObjC dependency on macOS to v10.x.

• Updated missing Bluetooth SIG characteristics and service UUIDs.

• Updated BlueZManager to remove empty interfaces from _properties during InterfacesRemoved message.

• Updated PyWinRT dependency to v2. Fixes #1529.

• Raise exception when trying to scan while in a single-treaded apartment (STA) on Windows. Fixes #1132.

Fixed

• Fixed BlueZ version in passive scanning error message. Fixes #1433.

• Fixed mypy requiring Unpack[ExtraArgs] that were intended to be optional. Fixes #1487.

• Fixed KeyError in BlueZ is_connected() and get_global_bluez_manager() when device is not present.
Fixes #1507.

• Fixed BlueZ _wait_removed completion on invalid object path. Fixes #1489.

• Fixed rare unhandled exception when scanning on macOS when using use_bdaddr. Fixes #1523.

• Fixed scanning silently failing on Windows when Bluetooth is off. Fixes #1535.

• Fixed using wrong value for tx_power in Android backend. Fixes #1532.

• Fixed 4-character UUIDs not working on BleakClient.*_gatt_char methods. Fixes #1498.

• Fixed race condition with getting max PDU size on Windows. Fixes #1497.

• Fixed filtering advertisement data by service UUID when multiple apps are scanning. Fixes #1534.

1.8.4 0.21.1 (2023-09-08)

Changed

• Changed dbus-fast dependency to include v2.x. Fixes #1412.

50 Chapter 1. Features

bleak Documentation, Release 0.22.1

1.8.5 0.21.0 (2023-09-02)

Added

• Added bleak.uuids.normalize_uuid_16() function.

• Added bleak.uuids.normalize_uuid_32() function.

• Added advertisement_data() async iterator method to BleakScanner. Merged #1361.

• Added type hints for kwargs on BleakScanner class methods.

• Added support for Python 3.12.

Changed

• Improved error messages when failing to get services in WinRT backend.

• Improved error messages with enum values in WinRT backend. Fixes #1284.

• Scanner backends modified to allow multiple advertisement callbacks. Merged #1367.

• Changed default handling of the response argument in BleakClient.write_gatt_char. Fixes #909.

• Bleak recipe now automatically installs bleak from GitHub release in Kivy example.

• Changed BlueZManager methods to raise BleakError when device is not in BlueZ.

• Optimized BlueZ backend device watchers and condition callbacks to avoid linear searches.

• Changed type hint for buffer protocol to collections.abc.Buffer.

Fixed

• Fixed handling all access denied errors when enumerating characteristics on Windows. Fixes #1291.

• Added support for 32bit UUIDs. Fixes #1314.

• Fixed typing for BaseBleakScanner detection callback.

• Fixed possible crash in _stopped_handler() in WinRT backend. Fixes #1330.

• Reduced expensive logging in the BlueZ backend. Merged #1376.

• Fixed race condition with "InterfaceRemoved" when getting services in BlueZ backend.

• Fixed missing permissions and requirements in android Kivy example. Fixes #1184.

• Fixed WinRT backend sometimes hanging forever when a device goes out of range during connection. Fixes
#1359.

1.8. Changelog 51

bleak Documentation, Release 0.22.1

Removed

Dropped support for Python 3.7.

1.8.6 0.20.2 (2023-04-19)

Fixed

• Fixed org.bluez.Error.InProgress in characteristic and descriptor read and write methods in BlueZ back-
end.

• Fixed OSError: [WinError -2147483629] The object has been closed when connecting on Win-
dows. Fixes #1280.

1.8.7 0.20.1 (2023-03-24)

Fixed

• Fixed possible garbage collection of running async callback from BleakClient.start_notify().

• Fixed possible garbage collection of running async callback from BleakScanner(detection_callback=).

• Fixed possible garbage collection of disconnect monitor in BlueZ backend. Fixed #1258.

1.8.8 0.20.0 (2023-03-17)

Added

• Added BLEAK_DBUS_AUTH_UID environment variable for hardcoding D-Bus UID. Merged #1182.

• Added return type None to some scanner methods.

• Added optional hack to use Bluetooth address instead of UUID on macOS. Merged #1073.

• Added BleakScanner.find_device_by_name() class method.

• Added optional command line argument to use debug log level to all applicable examples.

• Added bleak.uuids.normalize_uuid_str() function.

• Added optional services argument to BleakClient() to filter services. Merged #654.

• Added automatic retry on le-connection-abort-by-local in BlueZ backend. Fixes #1220.

Changed

• Dropped async-timeout dependency on Python >= 3.11.

• Deprecated BLEDevice.rssi and BLEDevice.metadata. Fixes #1025.

• BLEDevice now uses __slots__ to reduce memory usage. Merged #1117.

• BaseBleakClient.services is now None instead of empty service collection until services are discovered.

• Include thread name in BLEAK_LOGGING output. Merged #1144.

• Updated PyObjC dependency on macOS to v9.x.

52 Chapter 1. Features

bleak Documentation, Release 0.22.1

Fixed

• Fixed invalid UTF-8 in uuids.uuid16_dict.

• Fixed AttributeError in _ensure_success in WinRT backend.

• Fixed BleakScanner.stop() can raise BleakDBusErrorwith org.bluez.Error.NotReady in BlueZ back-
end.

• Fixed BleakScanner.stop() hanging in WinRT backend when Bluetooth is disabled.

• Fixed leaking services when get_services() is cancelled in WinRT backend.

• Fixed disconnect monitor task not always cancelled on the BlueZ client. Merged #1159.

• Fixed WinRT scanner never calling detection_callback when a device does not send a scan response. Fixes
#1211.

• Fixed BLEDevice name sometimes incorrectly None.

• Fixed unhandled exception in CentralManagerDelegate destructor on macOS. Fixes #1219.

• Fixed object passed to disconnected_callback is not BleakClient. Fixes #1200.

1.8.9 0.19.5 (2022-11-19)

Fixed

• Fixed more issues with getting services in WinRT backend.

1.8.10 0.19.4 (2022-11-06)

Fixed

• Fixed TypeError in WinRT backend introduced in v0.19.3.

1.8.11 0.19.3 (2022-11-06)

Fixed

• Fixed TimeoutError when connecting to certain devices with WinRT backend. Fixes #604.

1.8.12 0.19.2 (2022-11-06)

Fixed

• Fixed crash when getting services in WinRT backend in Python 3.11. Fixes #1112.

• Fixed cache mode when retrying get services in WinRT backend. Merged #1102.

• Fixed KeyError crash in BlueZ backend when removing non-existent property. Fixes #1107.

1.8. Changelog 53

bleak Documentation, Release 0.22.1

1.8.13 0.19.1 (2022-10-29)

Fixed

• Fixed crash in Android backend introduced in v0.19.0. Fixes #1085.

• Fixed service discovery blocking forever if device disconnects in BlueZ backend. Merged #1092.

• Fixed AttributeError crash when scanning on Windows builds < 19041. Fixes #1094.

1.8.14 0.19.0 (2022-10-13)

Added

• Added support for Python 3.11. Merged #990.

• Added better error message for Bluetooth not authorized on macOS. Merged #1033.

• Added BleakDeviceNotFoundError which should is raised if a device can not be found by connect, pair
and unpair. Merged #1022.

• Added rssi attribute to AdvertisementData. Merged #1047.

• Added BleakScanner.discovered_devices_and_advertisement_data property. Merged #1047.

• Added return_adv argument to BleakScanner.discover method. Merged #1047.

• Added BleakClient.unpair() implementation for BlueZ backend. Merged #1067.

Changed

• Changed AdvertisementData to a named tuple. Merged #1047.

• A faster unpack_variants is now provided by dbus-fast. Merged #1055.

Fixed

• On BlueZ, support creating additional instances running on a different event loops (i.e. multiple pytest-asyncio
cases). Merged #1034.

• Fixed unhandled exception in max_pdu_size_changed_handler in WinRT backend. Fixes #1039.

• Fixed stale services in WinRT backend causing WinError -2147483629. Fixes #1061.

Removed

Removed bleak.__version__. Use importlib.metadata.version('bleak') instead.

54 Chapter 1. Features

bleak Documentation, Release 0.22.1

1.8.15 0.18.1 (2022-09-25)

Fixed

• Reverted unintentional breaking parameter name changes. Fixes #1028.

1.8.16 0.18.0 (2022-09-23)

Changed

• Relaxed async-timeout dependency version to support different installations. Merged #1009.

• BleakClient.unpair() in WinRT backend can be called without being connected first. Merged #1012.

• Use relative imports internally. Merged #1007.

• BleakScanner and BleakClient are now concrete classes. Fixes #582.

• Deprecated BleakScanner.register_detection_callback().

• Deprecated BleakScanner.set_scanning_filter().

• Deprecated BleakClient.set_disconnected_callback().

• Deprecated BleakClient.get_services().

• Refactored common code in BleakClient.start_notify().

• (BREAKING) Changed notification callback argument from int to BleakGattCharacteristic. Fixes #759.

Fixed

• Fixed tx_power not included in AdvertisementData.__repr__ when 0. Merged #1017.

1.8.17 0.17.0 (2022-09-12)

Added

• AdvertisementData class now has an attribute tx_power. Merged #987.

Changed

• BleakClient methods now raise BleakError if called when not connected in WinRT backend. Merged #973.

• Extended disconnect timeout to 120 seconds in WinRT backend. Fixes #807.

• Changed version check for BlueZ battery workaround to exclude versions >= 5.55. Merged #976.

• Use Poetry for build system and dependencies. Merged #978.

• The BlueZ D-Bus backend implements a services cache between connections to significancy improve reconnect
performance. To use the cache, call connect and get_services with the dangerous_use_bleak_cache
argument to avoid services being resolved again. Merged #923.

• The BlueZ D-Bus backend now uses dbus-fast package instead of dbus-next which significantly improves
performance. Merged #988.

• The BlueZ D-Bus backend will not avoid trying to connect to devices that are already connected. Fixes #992.

1.8. Changelog 55

bleak Documentation, Release 0.22.1

• Updated logging to lazy version and replaced format by f-string for BleakClientWinRT. #1000.

• Added deprecation warning to discover() method. Merged #1005.

• BlueZ adapter is chosen dynamically if not provided, instead of using hardcoded “hci0”. Fixes #513.

Fixed

• Fixed wrong error message for BlueZ “Operation failed with ATT error”. Merged #975.

• Fixed possible AttributeError when enabling notifications for battery service in BlueZ backend. Merged
#976.

• Fixed use of wrong enum in unpair function of WinRT backend. Merged #986.

• Fixed inconsistent return types for properties and descriptors properties of BleakGATTCharacteristic.
Merged #989.

• Handle device being removed before GetManagedObjects returns in BlueZ backend. Fixes #996.

• Fixed crash in max_pdu_size_changed_handler in WinRT backend. Fixes #998.

• Fixes a race in the BlueZ D-Bus backend where the disconnect monitor would be removed before it could be
awaited. Merged #999.

Removed

• Removed BLEDeviceCoreBluetooth type from CoreBluetooth backend. Merged #977.

1.8.18 0.16.0 (2022-08-31)

Added

• Added BleakGattCharacteristic.max_write_without_response_size property. Fixes #738.

Fixed

• Fixed regression in v0.15 where devices removed from BlueZ while scanning were still listed in BleakScanner.
discovered_devices. Fixes #942.

• Fixed possible bad connection state in BlueZ backend. Fixes #951.

Changed

• Made BlueZ D-Bus signal callback logging lazy to improve performance. Merged #912.

• Switch to using async_timeout instead of asyncio.wait_for for performance. Merged #916.

• Improved performance of BlueZManager.get_services(). Fixes #927.

56 Chapter 1. Features

bleak Documentation, Release 0.22.1

Removed

• Removed explicit inheritance from object in class declarations. Merged #922.

• Removed first seen filter in BleakScanner detection callbacks on BlueZ backend. Merged #964.

1.8.19 0.15.1 (2022-08-03)

Fixed

• The global BlueZ manager now disconnects correctly on exception. Merged #918.

• Handle the race in the BlueZ D-Bus backend where the device disconnects during the connection process which
presented as Failed to cancel connection. Merged #919.

• Ensure the BlueZ D-Bus scanner can reconnect after DBus disconnection. Merged #920.

• Adjust default timeout for read_gatt_char() with CoreBluetooth to 20s. Fixes #926.

1.8.20 0.15.0 (2022-07-29)

Added

• Added new assigned_numbers module and AdvertisementDataType enum.

• Added new bluez kwarg to BleakScanner in BlueZ backend.

• Added support for passive scanning in the BlueZ backend. Fixes #606.

• Added option to use cached services, characteristics and descriptors in WinRT backend. Fixes #686.

• Added PendingDeprecationWarning to use of address_type as keyword argument. It will be moved into
the winrt keyword instead according to #623.

• Added better error message when adapter is not present in BlueZ backend. Fixes #889.

Changed

• Add py.typed file so mypy discovers Bleak’s type annotations.

• UUID descriptions updated to 2022-03-16 assigned numbers document.

• Replace use of deprecated asyncio.get_event_loop() in Android backend.

• Adjust default timeout for read_gatt_char() with CoreBluetooth to 10s. Merged #891.

• BleakScanner() args detection_callback and service_uuids are no longer keyword-only.

• BleakScanner() arg scanning_mode is no longer Windows-only and is no longer keyword-only.

• All BleakScanner() instances in BlueZ backend now use common D-Bus object manager.

• Deprecated filters kwarg in BleakScanner in BlueZ backend.

• BlueZ version is now checked on first connection instead of import to avoid import side effects. Merged #907.

1.8. Changelog 57

bleak Documentation, Release 0.22.1

Fixed

• Documentation fixes.

• On empty characteristic description from WinRT, use the lookup table instead of returning empty string.

• Fixed detection of first advertisement in BlueZ backend. Merged #903.

• Fixed performance issues in BlueZ backend caused by calling “GetManagedObjects” each time a BleakScanner
scans or BleakClient is connected. Fixes #500.

• Fixed not handling “InterfacesRemoved” in BleakClient in BlueZ backend. Fixes #882.

• Fixed leaking D-Bus socket file descriptors in BlueZ backend. Fixes #805.

Removed

• Removed fallback to call “ConnectDevice” when “Connect” fails in Bluez backend. Fixes #806.

1.8.21 0.14.3 (2022-04-29)

Changed

• Suppress macOS 12 scanner bug error message for macOS 12.3 and higher. Fixes #720.

• Added filters Discoverable and Pattern to BlueZ D-Bus scanner. Fixes #790.

Fixed

• Fixed reading the battery level returns a zero-filled bytearray on BlueZ >= 5.48. Fixes #750.

• Fixed unpairing does not work on windows with WinRT. Fixes #699

• Fixed leak of _disconnect_futures in CentralManagerDelegate.

• Fixed callback not removed from _disconnect_callbacks on disconnect in CentralManagerDelegate.

1.8.22 0.14.2 (2022-01-26)

Changed

• Updated bleak-winrt dependency to v1.1.1. Fixes #741.

Fixed

• Fixed name is 'Unknown' in WinRT backend. Fixes #736.

58 Chapter 1. Features

bleak Documentation, Release 0.22.1

1.8.23 0.14.1 (2022-01-12)

Fixed

• Fixed AttributeError when passing BLEDevice to BleakClient constructor on WinRT backend. Fixes
#731.

1.8.24 0.14.0 (2022-01-10)

Added

• Added service_uuids kwarg to BleakScanner. This can be used to work around issue of scanning not work-
ing on macOS 12. Fixes #230. Works around #635.

• Added UUIDs for LEGO Powered Up Smart Hubs.

Changed

• Changed WinRT backend to use GATT session status instead of actual device connection status.

• Changed handling of scan response data on WinRT backend. Advertising data and scan response data is now
combined in callbacks like other platforms.

• Updated bleak-winrt dependency to v1.1.0. Fixes #698.

Fixed

• Fixed InvalidStateError in CoreBluetooth backend when read and notification of the same characteristic are
used. Fixes #675.

• Fixed reading a characteristic on CoreBluetooth backend also triggers notification callback.

• Fixed in Linux, scanner callback not setting metadata parameters. Merged #715.

1.8.25 0.13.0 (2021-10-20)

Added

• Allow 16-bit UUID string arguments to get_service() and get_characteristic().

• Added register_uuids() to augment the uuid-to-description mapping.

• Added support for Python 3.10.

• Added force_indicate keyword argument for WinRT backend client’s start_notify method. Fixes #526.

• Added python-for-android backend.

1.8. Changelog 59

bleak Documentation, Release 0.22.1

Changed

• Changed from winrt dependency to bleak-winrt.

• Improved error when connecting to device fails in WinRT backend. Fixes #647.

• Changed examples to use asyncio.run().

• Changed the default notify method for the WinRT backend from Indicate to Notify.

• Refactored GATT error handling in WinRT backend.

• Changed Windows Bluetooth packet capture instructions. Fixes #653.

• Replaced usage of deprecated @abc.abstractproperty.

• Use asyncio.get_running_loop() instead of asyncio.get_event_loop().

• Changed “service is already present” exception to logged error in BlueZ backend. Merged #622.

Removed

• Removed dotnet backend.

• Dropped support for Python 3.6.

• Removed use_cached kwarg from BleakClient connect() and get_services() methods. Fixes #646.

Fixed

• Fixed unused timeout in the implementation of BleakScanner’s find_device_by_address() function.

• Fixed BleakClient ignoring the adapter kwarg. Fixes #607.

• Fixed writing descriptors in WinRT backend. Fixes #615.

• Fixed race on disconnect and cleanup of BlueZ matches when device disconnects early. Fixes #603.

• Fixed memory leaks on Windows.

• Fixed protocol error code descriptions on WinRT backend. Fixes #532.

• Fixed race condition hitting assentation in BlueZ disconnect() method. Fixes #641.

• Fixed enumerating services on a device with HID service on WinRT backend. Fixes #599.

• Fixed subprocess running to check BlueZ version each time a client is created. Fixes #602.

• Fixed exception when discovering services after reconnecting in CoreBluetooth backend.

1.8.26 0.12.1 (2021-07-07)

Changed

• Changed minimum winrt package version to 1.0.21033.1. Fixes #589.

60 Chapter 1. Features

bleak Documentation, Release 0.22.1

Fixed

• Fixed unawaited future when writing without response on CoreBluetooth backend. Fixes #586.

1.8.27 0.12.0 (2021-06-19)

Added

• Added mtu_size property for clients.

• Added WinRT backend.

• Added BleakScanner.discovered_devices property.

• Added an event to await when stopping scanners in WinRT and pythonnet backends. Fixes #556.

• Added BleakScanner.find_device_by_filter static method.

• Added scanner_byname.py example.

• Added optional command line argument to specify device to all applicable examples.

Changed

• Added Programming Language :: Python :: 3.9 classifier in setup.py.

• Deprecated BleakScanner.get_discovered_devices() async method.

• Added capability to handle async functions as detection callbacks in BleakScanner.

• Added error description in addition to error name when BleakDBusError is converted to string.

• Change typing of data parameter in write methods to Union[bytes, bytearray, memoryview].

• Improved type hints in CoreBluetooth backend.

• Use delegate callbacks for get_rssi() on CoreBluetooth backend.

• Use @objc.python_method where possible in PeripheralDelegate class.

• Using ObjC key-value observer to wait for BleakScanner.start() and stop() in CoreBluetooth backend.

Fixed

• Fixed KeyError when trying to connect to BLEDevice from advertising data callback on macOS. Fixes #448.

• Handling of undetected devices in connect_by_bledevice.py example. Fixes #487.

• Added Optional typehint for BleakScanner.find_device_by_address.

• Fixed linux_autodoc_mock_import in docs/conf.py.

• Minor fix for disconnection event handling in BlueZ backend. Fixes #491.

• Corrections for the Philips Hue lamp example. Merged #505.

• Fixed BleakClientBlueZDBus.pair() method always returning True. Fixes #503.

• Fixed waiting for notification start/stop to complete in CoreBluetooth backend.

• Fixed write without response on BlueZ < 5.51.

• Fixed error propagation for CoreBluetooth events.

1.8. Changelog 61

bleak Documentation, Release 0.22.1

• Fixed failed import on CI server when BlueZ is not installed.

• Fixed notification value should be bytearray on CoreBluetooth. Fixes #560.

• Fixed crash when cancelling connection when Python runtime shuts down on CoreBluetooth backend. Fixes
#538.

• Fixed connecting to multiple devices using a single BleakScanner on CoreBluetooth backend.

• Fixed deadlock in CoreBluetooth backend when device disconnects while callbacks are pending. Fixes #535.

• Fixed deadlock when using more than one service, characteristic or descriptor with the same UUID on Core-
Bluetooth backend.

• Fixed exception raised when calling BleakScanner.stop() when already stopped in CoreBluetooth backend.

1.8.28 0.11.0 (2021-03-17)

Added

• Updated dotnet.client.BleakClientDotNet connect method docstring.

• Added AdvertisementServiceData in BLEDevice in macOS devices

• Protection levels (encryption) in Windows backend pairing. Solves #405.

• Philips Hue lamp example script. Relates to #405.

• Keyword arguments to get_services method on BleakClient.

• Keyword argument use_cached on .NET backend, to enable uncached reading of services, characteristics and
descriptors in Windows.

• Documentation on troubleshooting OS level caches for services.

• New example added: Async callbacks with a queue and external consumer

• handle property on BleakGATTService objects

• service_handle property on BleakGATTCharacteristic objects

• Added more specific type hints for BleakGATTServiceCollection properties.

• Added asyncio task to disconnect devices on event loop crash in BlueZ backend.

• Added filtering on advertisement data callbacks on BlueZ backend so that callbacks only occur when advertising
data changes like on macOS backend.

• Added fallback to try org.bluez.Adapter1.ConnectDevice when trying to connect a device in BlueZ back-
end.

• Added UART service example.

62 Chapter 1. Features

bleak Documentation, Release 0.22.1

Fixed

• Fixed wrong OS write method called in write_gatt_descriptor() in Windows backend. Merged #403.

• Fixed BaseBleakClient.services_resolved not reset on disconnect on BlueZ backend. Merged #401.

• Fixed RSSI missing in discovered devices on macOS backend. Merged #400.

• Fixed scan result shows ‘Unknown’ name of the BLEDevice. Fixes #371.

• Fixed a broken check for the correct adapter in BleakClientBlueZDBus.

• Fixed #445 and #362 for Windows.

Changed

• Using handles to identify the services. Added handle abstract property to BleakGATTService and storing the
services by handle instead of UUID.

• Changed BleakScanner.set_scanning_filter() from async method to normal method.

• Changed BlueZ backend to use dbus-next instead of txdbus.

• Changed BleakClient.is_connected from async method to property.

• Consolidated D-Bus signal debug messages in BlueZ backend.

Removed

• Removed all __str__ methods from backend service, characteristic and descriptor implementations in favour
of those in the abstract base classes.

1.8.29 0.10.0 (2020-12-11)

Added

• Added AdvertisementData class used with detection callbacks across all supported platforms. Merged #334.

• Added BleakError raised during import on unsupported platforms.

• Added rssi parameter to BLEDevice constructor.

• Added detection_callback kwarg to BleakScanner constructor.

Changed

• Updated minimum PyObjC version to 7.0.1.

• Consolidated implementation of BleakScanner.register_detection_callback(). All platforms now
take callback with BLEDevice and AdvertisementData arguments.

• Consolidated BleakScanner.find_device_by_address() implementations.

• Renamed “device” kwarg to “adapter” in BleakClient and BleakScanner. Fixes #381.

1.8. Changelog 63

bleak Documentation, Release 0.22.1

Fixed

• Fixed use of bare exceptions.

• Fixed BleakClientBlueZDBus.start_notify() misses initial notifications with fast Bluetooth devices.
Fixed #374.

• Fix event callbacks on Windows not running in asyncio event loop thread.

• Fixed BleakScanner.discover() on older versions of macOS. Fixes #331.

• Fixed disconnect callback on BlueZ backend.

• Fixed calling BleakClient.is_connected() on Mac before connection.

• Fixed kwargs ignored in BleakScanner.find_device_by_address() in BlueZ backend. Fixes #360.

Removed

• Removed duplicate definition of BLEDevice in BlueZ backend.

• Removed unused imports.

• Removed separate implementation of global discover method.

1.8.30 0.9.1 (2020-10-22)

Added

• Added new attribute _device_info on BleakClientBlueZDBus. Merges #347.

• Added Pull Request Template.

Changed

• Updated instructions on how to contribute, file issues and make PRs.

• Updated AUTHORS.rst file with development team.

Fixed

• Fix well-known services not converted to UUIDs in BLEDevice.metadata in CoreBluetooth backend. Fixes
#342.

• Fix advertising data replaced instead of merged in scanner in CoreBluetooth backend. Merged #343.

• Fix CBCentralManager not properly waited for during initialization in some cases.

• Fix AttributeError in CoreBluetooth when using BLEDeviceCoreBluetooth object.

64 Chapter 1. Features

bleak Documentation, Release 0.22.1

1.8.31 0.9.0 (2020-10-20)

Added

• Timeout for BlueZ backend connect call to avoid potential infinite hanging. Merged #306.

• Added Interfaces API docs again.

• Troubleshooting documentation.

• noqa flags added to BleakBridge imports.

• Adding a timeout on OSX so that the connect cannot hang forever. Merge #336.

Changed

• BleakCharacteristic.description() on .NET now returns the same value as other platforms.

• Changed all adding and removal of .NET event handler from +=/-= syntax to calling add_ and remove_methods
instead. This allows for proper removal of event handlers in .NET backend.

• All code dependence on the BleakBridge is now removed. It is only imported to allow for access to UWP
namespaces.

• Removing internal method _start_notify in the .NET backend.

• GattSession object now manages lifetime of .NET BleakClient connection.

• BleakClient in .NET backend will reuse previous device information when reconnecting so that it doesn’t have
to scan/discover again.

Fixed

• UUID property bug fixed in BlueZ backend. Merged #307.

• Fix for broken RTD documentation.

• Fix UUID string arguments should not be case sensitive.

• Fix BleakGATTService.get_characteristic()method overridden with NotImplementedError in BlueZ
backend.

• Fix AttributeError when trying to connect using CoreBluetooth backend. Merged #323.

• Fix disconnect callback called multiple times in .NET backend. Fixes #312.

• Fix BleakClient.disconnect() method failing when called multiple times in .NET backend. Fixes #313.

• Fix BleakClient.disconnect() method failing when called multiple times in Core Bluetooth backend.
Merge #333.

• Catch RemoteError in is_connected in BlueZ backend. Fixes #310,

• Prevent overwriting address in constructor of BleakClient in BlueZ backend. Merge #311.

• Fix nordic uart UUID. Merge #339.

1.8. Changelog 65

bleak Documentation, Release 0.22.1

1.8.32 0.8.0 (2020-09-22)

Added

• Implemented set_disconnected_callback in the .NET backend BleakClient implementation.

• Added find_device_by_address method to the BleakScanner interface, for stopping scanning when a de-
sired address is found.

• Implemented find_device_by_address in the .NET backend BleakScanner implementation and switched
its BleakClient implementation to use that method in connect.

• Implemented find_device_by_address in the BlueZ backend BleakScanner implementation and switched
its BleakClient implementation to use that method in connect.

• Implemented find_device_by_address in the Core Bluetooth backend BleakScanner implementation and
switched its BleakClient implementation to use that method in connect.

• Added text representations of Protocol Errors that are visible in the .NET backend. Added these texts to errors
raised.

• Added pairing method in BleakClient interface.

• Implemented pairing method in .NET backend.

• Implemented pairing method in the BlueZ backend.

• Added stumps and NotImplementedError on pairing in macOS backend.

• Added the possibility to connect using BLEDevice instead of a string address. This allows for skipping the
discovery call when connecting.

Removed

• Support for Python 3.5.

Changed

• BREAKING CHANGE All notifications now have the characteristic’s integer handle instead of its UUID as
a string as the first argument sender sent to notification callbacks. This provides the uniqueness of sender in
notifications as well.

• Renamed BleakClient argument address to address_or_ble_device.

• Version 0.5.0 of BleakUWPBridge, with some modified methods and implementing IDisposable.

• Merged #224. All storing and passing of event loops in bleak is removed.

• Removed Objective C delegate compliance checks. Merged #253.

• Made context managers for .NET DataReader and DataWriter.

66 Chapter 1. Features

bleak Documentation, Release 0.22.1

Fixed

• .NET backend loop handling bug entered by #224 fixed.

• Removed default DEBUG level set to bleak logger. Fixes #251.

• More coherency in logger uses over all backends. Fixes #258

• Attempted fix of #255 and #133: cleanups, disposing of objects and creating new BleakBridge instances each
disconnect.

• Fixed some type hints and docstrings.

• Modified the connected_peripheral_delegate handling in macOS backend to fix #213 and #116.

• Merged #270, fixing a critical bug in get_services method in Core Bluetooth backend.

• Improved handling of disconnections and is_connected in BlueZ backend to fix #259.

• Fix for set_disconnected_callback on Core Bluetooth. Fixes #276.

• Safer Core Bluetooth presence check. Merged #280.

1.8.33 0.7.1 (2020-07-02)

Changed

• Improved, more explanatory error on BlueZ backend when BleakClient cannot find the desired device when
trying to connect. (#238)

• Better-than-nothing documentation about scanning filters added (#230).

• Ran black on code which was forgotten in 0.7.0. Large diffs due to that.

• Re-adding Python 3.8 CI “tests” on Windows again.

Fixed

• Fix when characteristic updates value faster than asyncio schedule (#240 & #241)

• Incorrect MANIFEST.in corrected. (#244)

1.8.34 0.7.0 (2020-06-30)

Added

• Better feedback of communication errors to user in .NET backend and implementing error details proposed in
#174.

• Two devices example file to use for e.g. debugging.

• Detection/discovery callbacks in Core Bluetooth backend Scanner implemented.

• Characteristic handle printout in service_explorer.py.

• Added scanning filters to .NET backend’s discover method.

1.8. Changelog 67

bleak Documentation, Release 0.22.1

Changed

• Replace NSRunLoop with dispatch queue in Core Bluetooth backend. This causes callbacks to be dispatched on
a background thread instead of on the main dispatch queue on the main thread. call_soon_threadsafe() is
used to synchronize the events with the event loop where the central manager was created. Fixes #111.

• The Central Manager is no longer global in the Core Bluetooth backend. A new one is created for each
BleakClient and BleakScanner. Fixes #206 and #105.

• Merged #167 and reworked characteristics handling in Bleak. Implemented in all backends; bleak now uses the
characteristics’ handle to identify and keep track of them. Fixes #139 and #159 and allows connection for devices
with multiple instances of the same characteristic UUIDs.

• In requirements.txt and Pipfile, the requirement on pythonnetwas bumped to version 2.5.1, which seems
to solve issues described in #217 and #225.

• Renamed HISTORY.rst to CHANGELOG.rst and adopted the Keep a Changelog format.

• Python 3.5 support from macOS is officially removed since pyobjc>6 requires 3.6+

• Pin pyobjc dependencies to use at least version 6.2. (PR #194)

• Pin development requirement on bump2version to version 1.0.0

• Added .pyup.yml for Pyup

• Using CBManagerState constants from pyobj instead of integers.

Removed

• Removed documentation note about not using new event loops in Linux. This was fixed by #143.

• _central_manager_delegate_ready was removed in macOS backend.

• Removed the bleak.backends.bluez.utils.get_gatt_service_pathmethod. It is not used by bleak and
possibly generates errors.

Fixed

• Improved handling of the txdbus connection to avoid hanging of disconnection clients in BlueZ backend. Fixes
#216, #219 & #221.

• #150 hints at the device path not being possible to create as is done in the get_device_object_path method. Now,
we try to get it from BlueZ first. Otherwise, use the old fallback.

• Minor documentation errors corrected.

• CBManagerStatePoweredOn is now properly handled in Core Bluetooth.

• Device enumeration in discover``and ``Scanner corrected. Fixes #211

• Updated documentation about scanning filters.

• Added workaround for isScanning attribute added in macOS 10.13. Fixes #234.

68 Chapter 1. Features

https://keepachangelog.com/en/1.0.0/

bleak Documentation, Release 0.22.1

1.8.35 0.6.4 (2020-05-20)

Fixed

• Fix for bumpversion usage

1.8.36 0.6.3 (2020-05-20)

Added

• Building and releasing from Github Actions

Removed

• Building and releasing on Azure Pipelines

1.8.37 0.6.2 (2020-05-15)

Added

• Added disconnection_callback functionality for Core Bluetooth (#184 & #186)

• Added requirements.txt

Fixed

• Better cleanup of Bluez notifications (#154)

• Fix for read_gatt_char in Core Bluetooth (#177)

• Fix for is_disconnected in Core Bluetooth (#187 & #185)

• Documentation fixes

1.8.38 0.6.1 (2020-03-09)

Fixed

• Including #156, lost notifications on macOS backend, which was accidentally missed on previous release.

1.8.39 0.6.0 (2020-03-09)

• New Scanner object to allow for async device scanning.

• Updated txdbus requirement to version 1.1.1 (Merged #122)

• Implemented write_gatt_descriptor for Bluez backend.

• Large change in Bluez backend handling of Twisted reactors. Fixes #143

• Modified set_disconnected_callback to actually call the callback as a callback. Fixes #108.

• Added another required parameter to disconnect callbacks.

1.8. Changelog 69

bleak Documentation, Release 0.22.1

• Added Discovery filter option in BlueZ backend (Merged #124)

• Merge #138: comments about Bluez version check.

• Improved scanning data for macOS backend. Merge #126.

• Merges #141, a critical fix for macOS.

• Fix for #114, write with response on macOS.

• Fix for #87, DIctionary changes size on .NET backend.

• Fix for #127, uuid or str on macOS.

• Handles str/uuid for characteristics better.

• Merge #148, Run .NET backend notifications on event loop instead of main loop.

• Merge #146, adapt characteristic write log to account for WriteWithoutResponse on macOS.

• Fix for #145, Error in cleanup on Bluez backend.

• Fix for #151, only subscribe to BlueZ messages on DBus. Merge #152.

• Fix for #142, Merge #144, Improved scanning for macOS backend.

• Fix for #155, Merge #156, lost notifications on macOS backend.

• Improved type hints

• Improved error handling for .NET backend.

• Documentation fixes.

1.8.40 0.5.1 (2019-10-09)

• Active Scanning on Windows, #99 potentially solving #95

• Longer timeout in service discovery on BlueZ

• Added timeout to constructors and connect methods

• Fix for get_services on macOS. Relates to #101

• Fixes for disconnect callback on BlueZ, #86 and #83

• Fixed reading of device name in BlueZ. It is not readable as regular characteristic. #104

• Removed logger feedback in BlueZ discovery method.

• More verbose exceptions on macOS, #117 and #107

1.8.41 0.5.0 (2019-08-02)

• macOS support added (thanks to @kevincar)

• Merged #90 which fixed #89: Leaking callbacks in BlueZ

• Merged #92 which fixed #91, Prevent leaking of DBus connections on discovery

• Merged #96: Regex patterns

• Merged #86 which fixed #83 and #82

• Recovered old .NET discovery method to try for #95

• Merged #80: macOS development

70 Chapter 1. Features

bleak Documentation, Release 0.22.1

1.8.42 0.4.3 (2019-06-30)

• Fix for #76

• Fix for #69

• Fix for #74

• Fix for #68

• Fix for #70

• Merged #66

1.8.43 0.4.2 (2019-05-17)

• Fix for missed part of PR #61.

1.8.44 0.4.1 (2019-05-17)

• Merging of PR #61, improvements and fixes for multiple issues for BlueZ backend

• Implementation of issue #57

• Fixing issue #59

• Documentation fixes.

1.8.45 0.4.0 (2019-04-10)

• Transferred code from the BleakUWPBridge C# support project to pythonnet code

• Fixed BlueZ >= 5.48 issues regarding Battery Service

• Fix for issue #55

1.8.46 0.3.0 (2019-03-18)

• Fix for issue #53: Windows and Python 3.7 error

• Azure Pipelines used for CI

1.8.47 0.2.4 (2018-11-30)

• Fix for issue #52: Timing issue getting characteristics

• Additional fix for issue #51.

• Bugfix for string method for BLEDevice.

1.8. Changelog 71

bleak Documentation, Release 0.22.1

1.8.48 0.2.3 (2018-11-28)

• Fix for issue #51: dpkg-query not found on all Linux systems

1.8.49 0.2.2 (2018-11-08)

• Made it compliant with Python 3.5 by removing f-strings

1.8.50 0.2.1 (2018-06-28)

• Improved logging on .NET discover method

• Some type annotation fixes in .NET code

1.8.51 0.2.0 (2018-04-26)

• Project added to Github

• First version on PyPI.

• Working Linux (BlueZ DBus API) backend.

• Working Windows (UWP Bluetooth API) backend.

1.8.52 0.1.0 (2017-10-23)

• Bleak created.

72 Chapter 1. Features

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

73

bleak Documentation, Release 0.22.1

74 Chapter 2. Indices and tables

PYTHON MODULE INDEX

b
bleak, 19
bleak.backends.bluezdbus.client, 26
bleak.backends.bluezdbus.scanner, 25
bleak.backends.characteristic, 16
bleak.backends.client, 38
bleak.backends.corebluetooth.client, 31
bleak.backends.corebluetooth.scanner, 29
bleak.backends.descriptor, 17
bleak.backends.device, 14
bleak.backends.p4android.client, 34
bleak.backends.p4android.scanner, 34
bleak.backends.scanner, 36
bleak.backends.service, 15
bleak.backends.winrt.client, 21
bleak.backends.winrt.scanner, 20
bleak.backends.winrt.util, 20
bleak.exc, 17
bleak.uuids, 18

75

bleak Documentation, Release 0.22.1

76 Python Module Index

INDEX

A
add_characteristic()

(bleak.backends.service.BleakGATTService
method), 15

add_characteristic()
(bleak.backends.service.BleakGATTServiceCollection
method), 15

add_descriptor() (bleak.backends.characteristic.BleakGATTCharacteristic
method), 16

add_descriptor() (bleak.backends.service.BleakGATTServiceCollection
method), 16

add_service() (bleak.backends.service.BleakGATTServiceCollection
method), 16

address (bleak.backends.device.BLEDevice attribute),
14

address (bleak.BleakClient property), 11
address_type (bleak.backends.winrt.client.WinRTClientArgs

attribute), 23
advertisement_data() (bleak.BleakScanner method),

8
AdvertisementData (class in bleak.backends.scanner),

36
AdvertisementDataCallback (in module

bleak.backends.scanner), 37
AdvertisementDataFilter (in module

bleak.backends.scanner), 37
allow_sta() (in module bleak.backends.winrt.util), 20
assert_mta() (in module bleak.backends.winrt.util), 20

B
backend (bleak.BleakScanner.ExtraArgs attribute), 7
BaseBleakClient (class in bleak.backends.client), 38
BaseBleakScanner (class in bleak.backends.scanner),

37
bleak

module, 19
bleak.backends.bluezdbus.client

module, 26
bleak.backends.bluezdbus.scanner

module, 25
bleak.backends.characteristic

module, 16

bleak.backends.client
module, 38

bleak.backends.corebluetooth.client
module, 31

bleak.backends.corebluetooth.scanner
module, 29

bleak.backends.descriptor
module, 17

bleak.backends.device
module, 14

bleak.backends.p4android.client
module, 34

bleak.backends.p4android.scanner
module, 34

bleak.backends.scanner
module, 36

bleak.backends.service
module, 15

bleak.backends.winrt.client
module, 21

bleak.backends.winrt.scanner
module, 20

bleak.backends.winrt.util
module, 20

bleak.exc
module, 17

bleak.uuids
module, 18

BleakCharacteristicNotFoundError, 17
BleakClient (class in bleak), 9
BleakClientBlueZDBus (class in

bleak.backends.bluezdbus.client), 26
BleakClientCoreBluetooth (class in

bleak.backends.corebluetooth.client), 31
BleakClientP4Android (class in

bleak.backends.p4android.client), 34
BleakClientWinRT (class in

bleak.backends.winrt.client), 21
BleakDBusError, 17
BleakDeviceNotFoundError, 18
BleakError, 18
BleakGATTCharacteristic (class in

77

bleak Documentation, Release 0.22.1

bleak.backends.characteristic), 16
BleakGATTDescriptor (class in

bleak.backends.descriptor), 17
BleakGATTService (class in bleak.backends.service),

15
BleakGATTServiceCollection (class in

bleak.backends.service), 15
BleakScanner (class in bleak), 5
BleakScannerBlueZDBus (class in

bleak.backends.bluezdbus.scanner), 25
BleakScannerCoreBluetooth (class in

bleak.backends.corebluetooth.scanner), 29
BleakScannerP4Android (class in

bleak.backends.p4android.scanner), 34
BleakScannerWinRT (class in

bleak.backends.winrt.scanner), 20
BLEDevice (class in bleak.backends.device), 14
bluez (bleak.BleakScanner.ExtraArgs attribute), 7
BlueZDiscoveryFilters (class in

bleak.backends.bluezdbus.scanner), 25
BlueZScannerArgs (class in

bleak.backends.bluezdbus.scanner), 26

C
call_detection_callbacks()

(bleak.backends.scanner.BaseBleakScanner
method), 37

cb (bleak.BleakScanner.ExtraArgs attribute), 7
CBScannerArgs (class in

bleak.backends.corebluetooth.scanner), 30
characteristic_handle

(bleak.backends.descriptor.BleakGATTDescriptor
property), 17

characteristic_uuid
(bleak.backends.descriptor.BleakGATTDescriptor
property), 17

characteristics (bleak.backends.service.BleakGATTService
property), 15

characteristics (bleak.backends.service.BleakGATTServiceCollection
property), 16

connect() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus
method), 27

connect() (bleak.backends.client.BaseBleakClient
method), 39

connect() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth
method), 31

connect() (bleak.backends.p4android.client.BleakClientP4Android
method), 34

connect() (bleak.backends.winrt.client.BleakClientWinRT
method), 21

connect() (bleak.BleakClient method), 10
create_or_update_device()

(bleak.backends.scanner.BaseBleakScanner
method), 37

D
dbus_error (bleak.exc.BleakDBusError property), 17
dbus_error_details (bleak.exc.BleakDBusError

property), 17
description (bleak.backends.characteristic.BleakGATTCharacteristic

property), 16
description (bleak.backends.descriptor.BleakGATTDescriptor

property), 17
description (bleak.backends.service.BleakGATTService

property), 15
descriptors (bleak.backends.characteristic.BleakGATTCharacteristic

property), 16
descriptors (bleak.backends.service.BleakGATTServiceCollection

property), 16
details (bleak.backends.device.BLEDevice attribute),

15
disconnect() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

method), 27
disconnect() (bleak.backends.client.BaseBleakClient

method), 39
disconnect() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

method), 31
disconnect() (bleak.backends.p4android.client.BleakClientP4Android

method), 35
disconnect() (bleak.backends.winrt.client.BleakClientWinRT

method), 21
disconnect() (bleak.BleakClient method), 10
discover() (bleak.BleakScanner class method), 6
discover() (in module bleak), 19
Discoverable (bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters

attribute), 25
discovered_devices (bleak.BleakScanner property), 8
discovered_devices_and_advertisement_data

(bleak.BleakScanner property), 8
DuplicateData (bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters

attribute), 25

E
ExtraArgs (class in bleak.BleakScanner), 7

F
filters (bleak.backends.bluezdbus.scanner.BlueZScannerArgs

attribute), 26
find_device_by_address() (bleak.BleakScanner

class method), 6
find_device_by_filter() (bleak.BleakScanner class

method), 6
find_device_by_name() (bleak.BleakScanner class

method), 6
FutureLike (class in bleak.backends.winrt.client), 23

G
GattCharacteristicsFlags (class in

bleak.backends.characteristic), 17

78 Index

bleak Documentation, Release 0.22.1

get_characteristic()
(bleak.backends.service.BleakGATTService
method), 15

get_characteristic()
(bleak.backends.service.BleakGATTServiceCollection
method), 16

get_descriptor() (bleak.backends.characteristic.BleakGATTCharacteristic
method), 16

get_descriptor() (bleak.backends.service.BleakGATTServiceCollection
method), 16

get_discovered_devices() (bleak.BleakScanner
method), 9

get_platform_client_backend_type() (in module
bleak.backends.client), 40

get_platform_scanner_backend_type() (in module
bleak.backends.scanner), 38

get_rssi() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth
method), 31

get_service() (bleak.backends.service.BleakGATTServiceCollection
method), 16

get_services() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus
method), 27

get_services() (bleak.backends.client.BaseBleakClient
method), 39

get_services() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth
method), 31

get_services() (bleak.backends.p4android.client.BleakClientP4Android
method), 35

get_services() (bleak.backends.winrt.client.BleakClientWinRT
method), 21

get_services() (bleak.BleakClient method), 14

H
handle (bleak.backends.characteristic.BleakGATTCharacteristic

property), 16
handle (bleak.backends.descriptor.BleakGATTDescriptor

property), 17
handle (bleak.backends.service.BleakGATTService

property), 15

I
is_connected (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

property), 27
is_connected (bleak.backends.client.BaseBleakClient

property), 39
is_connected (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

property), 31
is_connected (bleak.backends.p4android.client.BleakClientP4Android

property), 35
is_connected (bleak.backends.winrt.client.BleakClientWinRT

property), 22
is_connected (bleak.BleakClient property), 11

L
local_name (bleak.backends.scanner.AdvertisementData

attribute), 36

M
manufacturer_data (bleak.backends.scanner.AdvertisementData

attribute), 36
max_write_without_response_size

(bleak.backends.characteristic.BleakGATTCharacteristic
property), 16

metadata (bleak.backends.device.BLEDevice property),
15

module
bleak, 19
bleak.backends.bluezdbus.client, 26
bleak.backends.bluezdbus.scanner, 25
bleak.backends.characteristic, 16
bleak.backends.client, 38
bleak.backends.corebluetooth.client, 31
bleak.backends.corebluetooth.scanner, 29
bleak.backends.descriptor, 17
bleak.backends.device, 14
bleak.backends.p4android.client, 34
bleak.backends.p4android.scanner, 34
bleak.backends.scanner, 36
bleak.backends.service, 15
bleak.backends.winrt.client, 21
bleak.backends.winrt.scanner, 20
bleak.backends.winrt.util, 20
bleak.exc, 17
bleak.uuids, 18

mtu_size (bleak.backends.bluezdbus.client.BleakClientBlueZDBus
property), 27

mtu_size (bleak.backends.client.BaseBleakClient prop-
erty), 39

mtu_size (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth
property), 31

mtu_size (bleak.backends.p4android.client.BleakClientP4Android
property), 35

mtu_size (bleak.backends.winrt.client.BleakClientWinRT
property), 22

mtu_size (bleak.BleakClient property), 11

N
name (bleak.backends.device.BLEDevice attribute), 15
normalize_uuid_16() (in module bleak.uuids), 18
normalize_uuid_32() (in module bleak.uuids), 18
normalize_uuid_str() (in module bleak.uuids), 18

O
or_patterns (bleak.backends.bluezdbus.scanner.BlueZScannerArgs

attribute), 26

Index 79

bleak Documentation, Release 0.22.1

P
pair() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

method), 27
pair() (bleak.backends.client.BaseBleakClient method),

39
pair() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

method), 31
pair() (bleak.backends.p4android.client.BleakClientP4Android

method), 35
pair() (bleak.backends.winrt.client.BleakClientWinRT

method), 22
pair() (bleak.BleakClient method), 14
Pathloss (bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters

attribute), 26
Pattern (bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters

attribute), 26
platform_data (bleak.backends.scanner.AdvertisementData

attribute), 37
properties (bleak.backends.characteristic.BleakGATTCharacteristic

property), 17

R
read_gatt_char() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

method), 28
read_gatt_char() (bleak.backends.client.BaseBleakClient

method), 39
read_gatt_char() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

method), 32
read_gatt_char() (bleak.backends.p4android.client.BleakClientP4Android

method), 35
read_gatt_char() (bleak.backends.winrt.client.BleakClientWinRT

method), 22
read_gatt_char() (bleak.BleakClient method), 12
read_gatt_descriptor()

(bleak.backends.bluezdbus.client.BleakClientBlueZDBus
method), 28

read_gatt_descriptor()
(bleak.backends.client.BaseBleakClient
method), 39

read_gatt_descriptor()
(bleak.backends.corebluetooth.client.BleakClientCoreBluetooth
method), 32

read_gatt_descriptor()
(bleak.backends.p4android.client.BleakClientP4Android
method), 35

read_gatt_descriptor()
(bleak.backends.winrt.client.BleakClientWinRT
method), 22

read_gatt_descriptor() (bleak.BleakClient method),
13

register_detection_callback()
(bleak.backends.scanner.BaseBleakScanner
method), 38

register_detection_callback()
(bleak.BleakScanner method), 9

register_uuids() (in module bleak.uuids), 19
RSSI (bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters

attribute), 26
rssi (bleak.backends.device.BLEDevice property), 15
rssi (bleak.backends.scanner.AdvertisementData

attribute), 37

S
scanning_mode (bleak.BleakScanner.ExtraArgs at-

tribute), 7
seen_devices (bleak.backends.bluezdbus.scanner.BleakScannerBlueZDBus

attribute), 25
seen_devices (bleak.backends.corebluetooth.scanner.BleakScannerCoreBluetooth

attribute), 30
seen_devices (bleak.backends.p4android.scanner.BleakScannerP4Android

attribute), 34
seen_devices (bleak.backends.scanner.BaseBleakScanner

attribute), 38
seen_devices (bleak.backends.winrt.scanner.BleakScannerWinRT

attribute), 20
service_data (bleak.backends.scanner.AdvertisementData

attribute), 37
service_handle (bleak.backends.characteristic.BleakGATTCharacteristic

property), 17
service_uuid (bleak.backends.characteristic.BleakGATTCharacteristic

property), 17
service_uuids (bleak.backends.scanner.AdvertisementData

attribute), 37
service_uuids (bleak.BleakScanner.ExtraArgs at-

tribute), 7
services (bleak.backends.service.BleakGATTServiceCollection

property), 16
services (bleak.BleakClient property), 11
set_disconnected_callback()

(bleak.backends.client.BaseBleakClient
method), 39

set_disconnected_callback() (bleak.BleakClient
method), 14

set_scanning_filter()
(bleak.backends.bluezdbus.scanner.BleakScannerBlueZDBus
method), 25

set_scanning_filter()
(bleak.backends.corebluetooth.scanner.BleakScannerCoreBluetooth
method), 30

set_scanning_filter()
(bleak.backends.p4android.scanner.BleakScannerP4Android
method), 34

set_scanning_filter()
(bleak.backends.scanner.BaseBleakScanner
method), 38

set_scanning_filter()
(bleak.backends.winrt.scanner.BleakScannerWinRT

80 Index

bleak Documentation, Release 0.22.1

method), 20
set_scanning_filter() (bleak.BleakScanner

method), 9
start() (bleak.backends.bluezdbus.scanner.BleakScannerBlueZDBus

method), 25
start() (bleak.backends.corebluetooth.scanner.BleakScannerCoreBluetooth

method), 30
start() (bleak.backends.p4android.scanner.BleakScannerP4Android

method), 34
start() (bleak.backends.scanner.BaseBleakScanner

method), 38
start() (bleak.backends.winrt.scanner.BleakScannerWinRT

method), 21
start() (bleak.BleakScanner method), 8
start_notify() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

method), 28
start_notify() (bleak.backends.client.BaseBleakClient

method), 40
start_notify() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

method), 32
start_notify() (bleak.backends.p4android.client.BleakClientP4Android

method), 35
start_notify() (bleak.backends.winrt.client.BleakClientWinRT

method), 23
start_notify() (bleak.BleakClient method), 12
stop() (bleak.backends.bluezdbus.scanner.BleakScannerBlueZDBus

method), 25
stop() (bleak.backends.corebluetooth.scanner.BleakScannerCoreBluetooth

method), 30
stop() (bleak.backends.p4android.scanner.BleakScannerP4Android

method), 34
stop() (bleak.backends.scanner.BaseBleakScanner

method), 38
stop() (bleak.backends.winrt.scanner.BleakScannerWinRT

method), 21
stop() (bleak.BleakScanner method), 8
stop_notify() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

method), 28
stop_notify() (bleak.backends.client.BaseBleakClient

method), 40
stop_notify() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

method), 32
stop_notify() (bleak.backends.p4android.client.BleakClientP4Android

method), 36
stop_notify() (bleak.backends.winrt.client.BleakClientWinRT

method), 23
stop_notify() (bleak.BleakClient method), 13

T
Transport (bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters

attribute), 26
tx_power (bleak.backends.scanner.AdvertisementData

attribute), 37

U
uninitialize_sta() (in module

bleak.backends.winrt.util), 20
unpair() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

method), 28
unpair() (bleak.backends.client.BaseBleakClient

method), 40
unpair() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

method), 32
unpair() (bleak.backends.p4android.client.BleakClientP4Android

method), 36
unpair() (bleak.backends.winrt.client.BleakClientWinRT

method), 23
unpair() (bleak.BleakClient method), 14
use_bdaddr (bleak.backends.corebluetooth.scanner.CBScannerArgs

attribute), 30
use_cached_services

(bleak.backends.winrt.client.WinRTClientArgs
attribute), 23

uuid (bleak.backends.characteristic.BleakGATTCharacteristic
property), 17

uuid (bleak.backends.descriptor.BleakGATTDescriptor
property), 17

uuid (bleak.backends.service.BleakGATTService prop-
erty), 15

UUIDs (bleak.backends.bluezdbus.scanner.BlueZDiscoveryFilters
attribute), 26

W
WinRTClientArgs (class in

bleak.backends.winrt.client), 23
write_gatt_char() (bleak.backends.bluezdbus.client.BleakClientBlueZDBus

method), 28
write_gatt_char() (bleak.backends.client.BaseBleakClient

method), 40
write_gatt_char() (bleak.backends.corebluetooth.client.BleakClientCoreBluetooth

method), 32
write_gatt_char() (bleak.backends.p4android.client.BleakClientP4Android

method), 36
write_gatt_char() (bleak.backends.winrt.client.BleakClientWinRT

method), 23
write_gatt_char() (bleak.BleakClient method), 12
write_gatt_descriptor()

(bleak.backends.bluezdbus.client.BleakClientBlueZDBus
method), 28

write_gatt_descriptor()
(bleak.backends.client.BaseBleakClient
method), 40

write_gatt_descriptor()
(bleak.backends.corebluetooth.client.BleakClientCoreBluetooth
method), 33

write_gatt_descriptor()
(bleak.backends.p4android.client.BleakClientP4Android
method), 36

Index 81

bleak Documentation, Release 0.22.1

write_gatt_descriptor()
(bleak.backends.winrt.client.BleakClientWinRT
method), 23

write_gatt_descriptor() (bleak.BleakClient
method), 13

82 Index

	Features
	Installation
	Stable release
	Develop branch

	Usage
	API reference
	BleakScanner class
	Easy methods
	Starting and stopping
	Getting discovered devices and advertisement data
	Deprecated

	BleakClient class
	Connecting and disconnecting
	Device information
	GATT Client Operations
	Services
	GATT characteristics
	GATT descriptors

	Pairing/bonding
	Deprecated

	Class representing BLE devices
	GATT objects
	Exceptions
	Utilities
	Deprecated

	Backend implementations
	Windows backend
	Specific features for the Windows backend
	Client

	API
	Utilities
	Scanner
	Client

	Linux backend
	Special handling for write_gatt_char
	Resolving services with get_services
	Parallel Access
	D-Bus Authentication
	API
	Scanner
	Client

	macOS backend
	Specific features for the macOS backend
	API
	Scanner
	Client

	Android backend
	Considerations on Android
	API
	Scanner
	Client

	Shared Backend API
	Scanner
	Client

	Troubleshooting
	Common Mistakes
	macOS Bugs
	Bleak crashes with SIGABRT on macOS
	No devices found when scanning on macOS 12

	Windows Bugs
	Not working when threading model is STA

	Enable Logging
	Connecting to multiple devices at the same time
	Capture Bluetooth Traffic
	Windows 10
	Install
	Capture

	macOS
	Linux

	Handling OS Caching of BLE Device Services
	macOS
	Linux

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines

	Credits
	Development Lead
	Development Team / Collaborators
	Contributors
	Sponsors

	Changelog
	Unreleased
	Changed

	0.22.1 (2024-05-07)
	Added

	0.22.0 (2024-05-04)
	Added
	Changed
	Fixed

	0.21.1 (2023-09-08)
	Changed

	0.21.0 (2023-09-02)
	Added
	Changed
	Fixed
	Removed

	0.20.2 (2023-04-19)
	Fixed

	0.20.1 (2023-03-24)
	Fixed

	0.20.0 (2023-03-17)
	Added
	Changed
	Fixed

	0.19.5 (2022-11-19)
	Fixed

	0.19.4 (2022-11-06)
	Fixed

	0.19.3 (2022-11-06)
	Fixed

	0.19.2 (2022-11-06)
	Fixed

	0.19.1 (2022-10-29)
	Fixed

	0.19.0 (2022-10-13)
	Added
	Changed
	Fixed
	Removed

	0.18.1 (2022-09-25)
	Fixed

	0.18.0 (2022-09-23)
	Changed
	Fixed

	0.17.0 (2022-09-12)
	Added
	Changed
	Fixed
	Removed

	0.16.0 (2022-08-31)
	Added
	Fixed
	Changed
	Removed

	0.15.1 (2022-08-03)
	Fixed

	0.15.0 (2022-07-29)
	Added
	Changed
	Fixed
	Removed

	0.14.3 (2022-04-29)
	Changed
	Fixed

	0.14.2 (2022-01-26)
	Changed
	Fixed

	0.14.1 (2022-01-12)
	Fixed

	0.14.0 (2022-01-10)
	Added
	Changed
	Fixed

	0.13.0 (2021-10-20)
	Added
	Changed
	Removed
	Fixed

	0.12.1 (2021-07-07)
	Changed
	Fixed

	0.12.0 (2021-06-19)
	Added
	Changed
	Fixed

	0.11.0 (2021-03-17)
	Added
	Fixed
	Changed
	Removed

	0.10.0 (2020-12-11)
	Added
	Changed
	Fixed
	Removed

	0.9.1 (2020-10-22)
	Added
	Changed
	Fixed

	0.9.0 (2020-10-20)
	Added
	Changed
	Fixed

	0.8.0 (2020-09-22)
	Added
	Removed
	Changed
	Fixed

	0.7.1 (2020-07-02)
	Changed
	Fixed

	0.7.0 (2020-06-30)
	Added
	Changed
	Removed
	Fixed

	0.6.4 (2020-05-20)
	Fixed

	0.6.3 (2020-05-20)
	Added
	Removed

	0.6.2 (2020-05-15)
	Added
	Fixed

	0.6.1 (2020-03-09)
	Fixed

	0.6.0 (2020-03-09)
	0.5.1 (2019-10-09)
	0.5.0 (2019-08-02)
	0.4.3 (2019-06-30)
	0.4.2 (2019-05-17)
	0.4.1 (2019-05-17)
	0.4.0 (2019-04-10)
	0.3.0 (2019-03-18)
	0.2.4 (2018-11-30)
	0.2.3 (2018-11-28)
	0.2.2 (2018-11-08)
	0.2.1 (2018-06-28)
	0.2.0 (2018-04-26)
	0.1.0 (2017-10-23)

	Indices and tables
	Python Module Index
	Index

